Skip to main content

Drought Stress Responses and Signal Transduction in Plants

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Nature provides all necessary components for healthy growth and development of plants in the form of air, water, light, nutrients, and soil. Any imbalance in the environmental harmony may cause stress to them. Stresses encountered by plants can broadly be categorized into biotic and abiotic stresses. Biotic stresses are mainly caused by pathogens and herbivory, whereas abiotic stresses include the threat imposed by drought, salinity, and extremes of temperature, heavy metals, and pollution. Drought stress is a major cause of yield instability in crops across diverse eco-geographic regions worldwide. A variety of biochemical, molecular, and physiological changes are manifested by plants in response to drought stress. The cellular abscisic acid (ABA) concentration increases on water deficit leading to the activation of a number of stress-responsive genes and the patterns of expression of these genes are very complex, with some genes being induced early while others respond slowly. In general, drought-responsive genes respond to salt and cold stresses as well as to exogenous ABA treatment. However, there are several genes, which express themselves in an ABA-independent manner suggesting that both ABA-dependent and -independent signal transduction cascades exist for drought stress perception, response, and adaptation. Drought stress response and adaptation in plants involves an array of pathways for signal perception, transduction, gene expression and synthesis of proteins, and other stress metabolites. Drought-responsive genes can mainly be classified into two groups. First group constitutes genes whose products provide osmotolerance and protection to plants thus directly functioning in tolerance to stress, while the second group includes genes playing a role in signal transduction as well as regulation of gene expression. This chapter summarizes the complex molecular mechanisms of drought stress response and adaptation in plants, highlighting the transcriptional regulation of stress-responsive gene expression. It also focuses on the recent advances in analyzing various stress-responsive pathways with prime emphasis on ABA-dependent and -independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 11:69

    PubMed Central  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011a) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197(3):177–185. doi:10.1111/j.1439-037X.2010.00459.x

    CAS  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Khan I, Xue LL (2011b) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. J Agron Crop Sci 197(4):296–301. doi:10.1111/j.1439-037X.2010.00468.x

    CAS  Google Scholar 

  • Anjum SA, Xi X-Y, Wang L-C, Saleem MF, Man C, Lei W (2011c) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho T-HD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa) via cell membrane protection. Plant Sci 166:855–862

    CAS  Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782

    CAS  PubMed  Google Scholar 

  • Baloch MJ, Dunwell J, Khakwani AA, Dennet M, Jatoi WA, Channa SA (2012) Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages. J Agric Res 50:299–310

    Google Scholar 

  • Bao Y, Wang C, Jiang C, Pan J, Zhang G, Liu H, Zhang H (2014) The tumor necrosis factor receptor-associated factor (TRAF)-like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an ABA-dependent manner in Arabidopsis. New Phytol 202(1):174–187. doi:10.1111/nph.12644

    CAS  PubMed  Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14:647

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bota J, Flexas J, Medrano H (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817

    CAS  PubMed  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Bowman MJ, Park W, Bauer PJ, Udall JA, Page JT, Raney J, Scheffler BE, Jones DC, Campbell BT (2013) RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress. PLoS One 8:e82634

    PubMed Central  PubMed  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bray EA (1994) Alterations in gene expression in response to water deficit. In: Basra AS (ed) Stress-induced gene expression in plants. Harwood Academic, Amsterdam, pp 1–23

    Google Scholar 

  • Chen J, Xue B, Xia X, Yin W (2013a) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441:630–636

    CAS  PubMed  Google Scholar 

  • Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, de Qiu Z, Yang ZL, Chen SL (2013b) Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics 14:687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    CAS  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30:867–877

    CAS  PubMed  Google Scholar 

  • Claussen W (2004) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248

    Google Scholar 

  • Del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40:1257–1263

    Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1110

    CAS  PubMed  Google Scholar 

  • Denekamp M, Smeekens SC (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132:1415–1423

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR et al (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    PubMed Central  CAS  PubMed  Google Scholar 

  • DU ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013) Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ 36:300–314

    CAS  PubMed  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • Egilla JN, Davies FT Jr, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135–140

    CAS  Google Scholar 

  • El Maarouf H, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39:1257–1265

    PubMed  Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale. Eur J Agron 28:171–177

    Google Scholar 

  • Fan QJ, Yan FX, Qiao G, Zhang BX, Wen XP (2014) Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis. Gene 533:322–331

    CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A (2006) Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 49:285–294

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111–123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Masaru OT, Kazuo S, Kazuko YS (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gamboa MC, Baltierra F, Leon G, Krauskopf E (2013) Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus. Plant Physiol Biochem 73:99–105

    CAS  PubMed  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156

    CAS  PubMed  Google Scholar 

  • Garg BK (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  • Garg B, Lata C, Prasad M (2012) A study of the role of gene TaMYB2 and an associated SNP in dehydration tolerance in common wheat. Mol Biol Rep 39:10865–10871

    CAS  PubMed  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141

    CAS  PubMed  Google Scholar 

  • Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52:163–210

    CAS  PubMed  Google Scholar 

  • Guo C, Ge X, Ma H (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol 82:239–253

    CAS  PubMed  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    CAS  PubMed  Google Scholar 

  • Hong JP, Kim WT (2005) Isolation and functional characterization of the Ca-DREBLP1gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta 220:875–888

    CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Xianghua L, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imamura T, Higuchi A, Takahashi H (2013) Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Plant Sci 213:55–66

    CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    CAS  PubMed  Google Scholar 

  • Jacob T, Ritchie S, Assmann SM, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci U S A 96:12192–12197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    PubMed Central  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol 331:42–47

    PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser WM, Kaiser G, Schöner S, Neimanis S (1981) Photosynthesis under osmotic stress. Differential recovery of photosynthetic activities of stroma enzymes, intact chloroplasts and leaf slices after exposure to high solute concentrations. Planta 153:430–435

    CAS  PubMed  Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang NY, Cho C, Kim J (2013) Inducible expression of Arabidopsis response regulator 22 (ARR22), a type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS One 8:e79248

    PubMed Central  PubMed  Google Scholar 

  • Karan R, Subudhi PK (2012a) A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis. BMC Plant Biol 12:187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karan R, Subudhi PK (2012b) Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis. Biochem Biophys Res Commun 424:747–752

    CAS  PubMed  Google Scholar 

  • Karan R, Subudhi PK (2013) Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33:373–384

    PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLD delta, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J 26:595–605

    CAS  PubMed  Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2013) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed 132:496–499

    CAS  Google Scholar 

  • Lata C, Prasad M (2014) Association of an allele-specific marker with dehydration stress tolerance in foxtail millet suggests SiDREB2 to be an important QTL. J Plant Biochem Biotechnol 23:119–122

    CAS  Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    CAS  PubMed  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011a) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828

    CAS  PubMed  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011b) Association of a SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2013) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed 132:496–499.

    CAS  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011c) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A, Venkateshwarulu B (eds) Abiotic stress response in plants. INTECH Open Access, Rijeka, pp 269–296

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, le Ham H, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7:e49522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li YC, Meng FR, Zhang CY, Zhang N, Sun MS, Ren JP, Niu HB, Wang X, Yin J (2012) Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and -tolerant wheat (Triticum aestivum L.). J Plant Biol 55:349–360

    CAS  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 8:e83056

    PubMed Central  PubMed  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:391–406

    Google Scholar 

  • Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11:431–443

    CAS  PubMed  Google Scholar 

  • Lü P, Kang M, Jiang X, Dai F, Gao J, Zhang C (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    PubMed  Google Scholar 

  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z (2014) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One 8:e52126

    Google Scholar 

  • Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y (2012) GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235:1141–1155

    CAS  PubMed  Google Scholar 

  • Luo C, Guo C, Wang W, Wang L, Chen L (2013) Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep 33:323–336

    PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Manikavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138

    Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Alagu Lakshmanan GM, Panneerselvam R (2007) Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces 59:141–149

    CAS  PubMed  Google Scholar 

  • Marraccini P, Vinecky F, Alves GS, Ramos HJ, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MA, Leroy T, Pot D, Vieira LG, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    CAS  PubMed  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguch-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196

    CAS  PubMed  Google Scholar 

  • McWilliams D (2003) Drought strategies for cotton. Cooperative extension service circular 582, College of Agriculture and Home Economics, New Mexico State University, USA

    Google Scholar 

  • Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK (2013) Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice (N Y) 6:38

    Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:1749–1762

    CAS  Google Scholar 

  • Munnik T, Meijer HJG, ter Riet B, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipae D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    CAS  PubMed  Google Scholar 

  • Nakashima K, Shinwar ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Mol Biol 42:657–665

    CAS  PubMed  Google Scholar 

  • Nakashima K, Tran L-SP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    CAS  PubMed  Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111:373–382

    Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246

    CAS  PubMed  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    CAS  PubMed  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    CAS  PubMed  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  PubMed  Google Scholar 

  • Peng Y, Zhang J, Cao G, Xie Y, Liu X, Lu M, Wang G (2010) Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29:793–802

    CAS  PubMed  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:654120. doi:10.1155/2013/654120

    PubMed Central  PubMed  Google Scholar 

  • Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18:639–648

    CAS  Google Scholar 

  • Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23

    CAS  PubMed  Google Scholar 

  • Pinosio S, González-Martínez SC, Bagnoli F, Cattonaro F, Grivet D, Marroni F, Lorenzo Z, Pausas JG, Verdú M, Vendramin GG (2014) First insights into the transcriptome and development of new genomic tools of a widespread circum-Mediterranean tree species, Pinus halepensis Mill. Mol Ecol Resour 14(4):846–856. doi:10.1111/1755-0998.12232

    CAS  PubMed  Google Scholar 

  • Pospíšilová J, Synková H, Haisel D, Baťková P (2009) Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biol Plant 53:11–20

    Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Suresh BV, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473

    CAS  PubMed  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol 8:476–488

    CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrota C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    CAS  PubMed  Google Scholar 

  • Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012a) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genomics 13:94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV (2012b) Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 13:680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendirff S, Friis P, Costantino P, Bones AM, Nielson HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis thaliana. Plant Physiol 161:1783–1794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 347–361

    Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    CAS  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12(4):468–479. doi:10.1111/pbi.12153

    CAS  PubMed  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 24:14–18

    Google Scholar 

  • Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 204:33–40

    Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    PubMed Central  CAS  PubMed  Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sečenji M, Lendvai Á, Miskolczi P, Kocsy G, Gallé Á, Szucs A, Hoffmann B, Sárvári É, Schweizer P, Stein N, Dudits D, Györgyey J (2010) Differences in root functions during long-term drought adaptation: comparison of active gene sets of two wheat genotypes. Plant Biol 12(6):871–882. doi:10.1111/j.1438-8677.2009.00295.x

    PubMed  Google Scholar 

  • Seo YS, Choi JY, Kim SJ, Kim EY, Shin JS, Kim WT (2012) Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Rep 31:1659–1665

    CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    CAS  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+ dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    CAS  PubMed  Google Scholar 

  • Shin D, Moon S-J, Han S, Kim B-G, Park SR, Lee S-K, Yoon H-J, Lee H-E, Kwon H-B, Baek D, Yi BY, Byun M-O (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421–432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    CAS  PubMed  Google Scholar 

  • Siddique MRB, Hamid A, Islam MS (2001) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

    Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD QR (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    CAS  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    CAS  PubMed  Google Scholar 

  • Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y (2013) A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237:1527–1545

    CAS  PubMed  Google Scholar 

  • Tahir MHN, Imran M, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agric Biol 3:398–400

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42:214–222

    CAS  PubMed  Google Scholar 

  • Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang S, Liang H, Yan D, Zhao Y, Han X, Carlson JE, Xia X, Yin W (2013) Populus euphratica: the transcriptomic response to drought stress. Plant Mol Biol 83:539–557

    CAS  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    CAS  PubMed  Google Scholar 

  • Tsuzuki T, Takahashi K, Tomiyama M, Inoue S, Kinoshita T (2013) Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Front Plant Sci 4:440

    PubMed Central  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valente MA, Faria JA, Soares-Ramos JR, Reis PA, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MA, Fietto LG, Loureiro ME, Aragão FJ, Fontes EP (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    CAS  PubMed  Google Scholar 

  • Vannini M, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    CAS  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA, upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    CAS  PubMed  Google Scholar 

  • Wahid A, Rasul E (2005) Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press, Boca Raton, pp 479–497

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6:e25216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    CAS  PubMed  Google Scholar 

  • Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC et al (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    CAS  PubMed  Google Scholar 

  • Xia N, Zhang G, Liu X-Y, Deng L, Cai G-L, Zhang Y, Wang X-J, Zhao J, Huang L-L, Kang Z-S (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    CAS  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of Osb-ZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    PubMed  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166

    CAS  PubMed  Google Scholar 

  • Xiong L, Lee BH, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of Abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62:397–408

    CAS  PubMed  Google Scholar 

  • Yan DH, Fenning T, Tang S, Xia X, Yin W (2012) Genome-wide transcriptional response of Populus euphratica to long-term drought stress. Plant Sci 195:24–35

    CAS  PubMed  Google Scholar 

  • Yang F, Miao LF (2010) Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fenn 44:23–37

    Google Scholar 

  • Yao L-M, Wang B, Cheng L-J, Wu T-L (2013) Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8:e58108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeid IM, Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50:635–640

    CAS  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

    CAS  PubMed  Google Scholar 

  • Zhang X, Yao D, Wang Q, Xu W, Wei Q et al (2013) mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 8:e54762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang N, Liu B, Ma C, Zhang G, Chang J, Si H, Wang D (2014) Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato. Mol Biol Rep 41:505–517

    CAS  PubMed  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759

    CAS  PubMed  Google Scholar 

  • Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110

    PubMed Central  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    CAS  PubMed  Google Scholar 

  • Zhou GA, Chang RZ, Qiu LJ (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou ML, Ma JT, Zhao YM, Wei YH, Tang YX, Wu YM (2012a) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506:10–17

    CAS  PubMed  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012b) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Gao F, Liu R, Feng J, Li H (2012c) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 13:266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu S, Yu X, Wang X et al (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Charu Lata and Mehanathan Muthamilarasan acknowledge Department of Science and Technology and University Grant Commission, Govt. of India for the award of INSPIRE Faculty Award [IFA-11LSPA-01] and Junior Research Fellowship, respectively. The authors work in this area is supported by Department of Biotechnology and core grant of National Institute of Plant Genome Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lata, C., Muthamilarasan, M., Prasad, M. (2015). Drought Stress Responses and Signal Transduction in Plants. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_7

Download citation

Publish with us

Policies and ethics