Advertisement

U1 interference (U1i) for Antiviral Approaches

  • Lorea Blázquez
  • Puri Fortes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 848)

Abstract

U1 snRNP (U1 small nuclear ribonucleoprotein) is an essential component of the splicing machinery. U1 snRNP also plays an additional role in 3′-end mRNA processing when it binds close to polyadenylation sites (PAS). Cotranscriptionally, U1 snRNP binding close to putative PAS prevents premature cleavage and polyadenylation and consequently safeguards pre-mRNA transcripts and defines promoter directionality. At the 3′-end of mRNAs, U1 snRNP binding to putative PAS may regulate mRNA length or inhibit polyadenylation and, therefore, gene expression. U1 interference (U1i) is a technique to inhibit gene expression based on the property of U1 snRNP to inhibit polyadenylation. It requires the expression of a modified U1 snRNP, which interacts with a target gene upstream of its PAS and inhibits target gene expression. U1i has been used to inhibit the expression of reporter or endogenous genes both in tissue culture and in animal models. In addition, U1i combination with RNA interference (RNAi), another RNA-based gene silencing technology, results in a synergistic increased inhibition. This is of special interest for antiviral therapy, where strong inhibitions may be required to decrease the expression of replicative viral RNAs and impact the replication cycle. Furthermore, the combination of U1i and RNAi-based inhibitors should prevent the appearance of viral variants resistant to the treatment and allows the dose of inhibitors to be decreased and a functional inhibition to be obtained with fewer off target effects. In fact, U1i has been used to inhibit the expression of HIV-1 and HBV, whose viral genomes express mRNAs that must be polyadenylated by the nuclear polyadenylation machinery. In the case of HBV, antiviral U1i has been combined with RNAi to demonstrate a strong inhibition of expression from HBV sequences in vivo. This shows that, although several aspects of U1i technology remain to be addressed, U1i and U1i combined with RNAi have great potential as antivirals.

Keywords

RNAi U1snRNP U1i HBV HIV 

References

  1. 1.
    Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001;13(3):290–301.CrossRefPubMedGoogle Scholar
  2. 2.
    Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.CrossRefPubMedGoogle Scholar
  3. 3.
    Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707. doi: 10.1101/cshperspect.a003707.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Lund E, Dahlberg JE. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J Biol Chem. 1984;259(3):2013–21.PubMedGoogle Scholar
  5. 5.
    Baserga SJ, Steitz JA. The diverse world of small ribonucleoproteins. In: The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993. p. 359–81.Google Scholar
  6. 6.
    Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Furger A, O’Sullivan JM, Binnie A, Lee BA, Proudfoot NJ. Promoter proximal splice sites enhance transcription. Genes Dev. 2002;16(21):2792–9.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, Kjems J. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell. 2008;29(2):271–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwek KY, Murphy S, Furger A, Thomas B, O’Gorman W, Kimura H, Proudfoot NJ, Akoulitchev A. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol. 2002;9(11):800–5.PubMedGoogle Scholar
  10. 10.
    Furth PA, Choe WT, Rex JH, Byrne JC, Baker CC. Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol. 1994;14(8):5278–89.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell. 1998;1(2):255–64.CrossRefPubMedGoogle Scholar
  12. 12.
    Goraczniak R, Gunderson SI. The regulatory element in the 3′-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein 1. J Biol Chem. 2008;283(4):2286–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Ashe MP, Pearson LH, Proudfoot NJ. The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 1997;16(18):5752–63.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Vagner S, Ruegsegger U, Gunderson SI, Keller W, Mattaj IW. Position-dependent inhibition of the cleavage step of pre-mRNA 3′-end processing by U1 snRNP. RNA. 2000;6(2):178–88.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature. 2010;468(7324):664–8.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, Dreyfuss G. U1 snRNP determines mRNA length and regulates isoform expression. Cell. 2012;150(1):53–64.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature. 2013;499(7458):360–3.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M, Jorgensen M, Andersson R, Hoof I, Schein A, Andersen PR, Andersen PK, Preker P, Valen E, Zhao X, Pelechano V, Steinmetz LM, Sandelin A, Jensen TH. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol. 2013;20(8):923–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev. 2012;26(19):2169–79.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Goraczniak R, Behlke MA, Gunderson SI. Gene silencing by synthetic U1 adaptors. Nat Biotechnol. 2009;27(3):257–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Guan F, Caratozzolo RM, Goraczniak R, Ho ES, Gunderson SI. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation. RNA. 2007;13(12):2129–40.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A, Bohn G, Mandel-Gutfreund Y, Bodem J, Klein C, Bohne J. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J. 2012;31(20):4035–44.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Beckley SA, Liu P, Stover ML, Gunderson SI, Lichtler AC, Rowe DW. Reduction of target gene expression by a modified U1 snRNA. Mol Cell Biol. 2001;21(8):2815–25.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Abad X, Vera M, Jung SP, Oswald E, Romero I, Amin V, Fortes P, Gunderson SI. Requirements for gene silencing mediated by U1 snRNA binding to a target sequence. Nucleic Acids Res. 2008;36(7):2338–52.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Fortes P, Cuevas Y, Guan F, Liu P, Pentlicky S, Jung SP, Martinez-Chantar ML, Prieto J, Rowe D, Gunderson SI. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proc Natl Acad Sci U S A. 2003;100(14):8264–9.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Sajic R, Lee K, Asai K, Sakac D, Branch DR, Upton C, Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res. 2007;35(1):247–55.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Liu P, Gucwa A, Stover ML, Buck E, Lichtler A, Rowe D. Analysis of inhibitory action of modified U1 snRNAs on target gene expression: discrimination of two RNA targets differing by a 1 bp mismatch. Nucleic Acids Res. 2002;30(11):2329–39.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A. Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical, cancer cells. Mol Cancer. 2008;7:26.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Koornneef A, van Logtenstein R, Timmermans E, Pisas L, Blits B, Abad X, Fortes P, Petry H, Konstantinova P, Ritsema T. AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i. Gene Ther. 2011;18(9):929–35.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Blazquez L, Gonzalez-Rojas SJ, Abad A, Razquin N, Abad X, Fortes P. Increased in vivo inhibition of gene expression by combining RNA interference and U1 inhibition. Nucleic Acids Res. 2012;40(1):e8.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J. 2006;25(1):129–38.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Blazquez L, Fortes P. U1 snRNP control of 3′-end processing and the therapeutic application of U1 inhibition combined with RNA interference. Curr Mol Med. 2013;13(7):1203–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Sharma D, Issac B, Raghava GP, Ramaswamy R. Spectral repeat finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics. 2004;20(9):1405–12.CrossRefPubMedGoogle Scholar
  35. 35.
    McQuisten KA, Peek AS. Identification of sequence motifs significantly associated with antisense activity. BMC Bioinformatics. 2007;8:184.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Knoepfel SA, Abad A, Abad X, Fortes P, Berkhout B. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res. 2012;94(3):208–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Abad X, Razquin N, Abad A, Fortes P. Combination of RNA interference and U1 inhibition leads to increased inhibition of gene expression. Nucleic Acids Res. 2010;38(13):e136.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Spiluttini B, Gu B, Belagal P, Smirnova AS, Nguyen VT, Hebert C, Schmidt U, Bertrand E, Darzacq X, Bensaude O. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J Cell Sci. 2010;123(Pt 12):2085–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Kato K, Hitomi Y, Imamura K, Esumi H. Hyperstable U1snRNA complementary to the K-ras transcripts induces cell death in pancreatic cancer cells. Br J Cancer. 2002;87(8):898–904.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mandal D, Feng Z, Stoltzfus CM. Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J Virol. 2010;84(24):12790–800.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Tanner G, Glaus E, Barthelmes D, Ader M, Fleischhauer J, Pagani F, Berger W, Neidhardt J. Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA. Hum Mutat. 2009;30(2):255–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Blazquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, Garcia L, Valcarcel J, Fortes P, Lopez de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat. 2013;34(10):1387–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Vickers TA, Sabripour M, Crooke ST. U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP. Nucleic Acids Res. 2011;39(10):e71.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Goraczniak R, Wall BA, Behlke MA, Lennox KA, Ho ES, Zaphiros NH, Jakubowski C, Patel NR, Zhao S, Magaway C, Subbie SA, Jenny Yu L, Lacava S, Reuhl KR, Chen S, Gunderson SI. U1 adaptor oligonucleotides targeting BCL2 and GRM1 suppress growth of human melanoma xenografts in vivo. Mol Ther Nucleic Acids. 2013;2:e92.CrossRefPubMedGoogle Scholar
  46. 46.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21(6):635–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.CrossRefPubMedGoogle Scholar
  49. 49.
    UNAIDS Global Report; 2012.Google Scholar
  50. 50.
    Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Liu D, Donegan J, Nuovo G, Mitra D, Laurence J. Stable human immunodeficiency virus type 1 (HIV-1) resistance in transformed CD4+ monocytic cells treated with multitargeting HIV-1 antisense sequences incorporated into U1 snRNA. J Virol. 1997;71(5):4079–85.PubMedCentralPubMedGoogle Scholar
  52. 52.
    ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581–92.CrossRefPubMedGoogle Scholar
  54. 54.
    Hollinger F, Liang T. Hepatitis B virus. In: Knipe D, Howley P, editors. Fields virology. Philadelphia, PA: Lippincott-Raven Publishers; 2001. p. 2971.Google Scholar
  55. 55.
    Romano PR, McCallus DE, Pachuk CJ. RNA interference-mediated prevention and therapy for hepatocellular carcinoma. Oncogene. 2006;25(27):3857–65.CrossRefPubMedGoogle Scholar
  56. 56.
    Scaglione SJ, Lok AS. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 2012;142(6):1360–1368.e1.CrossRefPubMedGoogle Scholar
  57. 57.
    Nebbia G, Peppa D, Maini MK. Hepatitis B infection: current concepts and future challenges. QJM. 2012;105(2):109–13.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Blazquez L, Fortes P. Harnessing RNAi for the treatment of viral infections. In: Arbuthnot P, Weinberg M, editors. Applied RNAi: from fundamental research to therapeutic applications. Linton, Cambs, UK:Horizon Press; 2014.Google Scholar
  59. 59.
    Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther. 2008;16(6):1105–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Gene and Cell Therapy 2015

Authors and Affiliations

  1. 1.Department of Gene Therapy and HepatologyCenter for Applied Medical ResearchPamplonaSpain

Personalised recommendations