Advertisement

The Biology of Quiescent CD4 T Cells, Their Role in HIV-1 Infection and Cocaine Drug Abuse

  • Dhaval Dixit
  • Dimitrios N. Vatakis

Abstract

Human immunodeficiency virus (HIV) infection of quiescent CD4+ T cells is an area of intense investigation. These cells block the early HIV life cycle resulting in a largely inefficient infection. While a series of restrictive factors have been identified to explain this phenomenon, the mechanisms are yet to be determined. Moreover, over the years, a number of immune and non-immune factors including cocaine drug abuse have been shown to lift the restriction and allow resting cells to be productively infected by HIV. In this review, we discuss the above, along with an overview of the biology of quiescent T cells. As resting T cells constitute a major portion of the viral reservoir, understanding the causes of the block to infection and the mechanisms behind alleviating the restriction will have major implications in the treatment of HIV.

Keywords

Quiescent CD4 T cells HIV infection Host restriction factors HIV reservoir Cocaine Drug abuse 

References

  1. 1.
    Cotner T, Williams JM, Christenson L, Shapiro HM, Strom TB, Strominger J. Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J Exp Med. 1983;157(2):461–72. PMCID: PMC2186946.PubMedCrossRefGoogle Scholar
  2. 2.
    Healy JI, Goodnow CC. Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol. 1998;16:645–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol. 2001;2(12):1174–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol. 2002;2(1):11–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Yusuf I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol. 2003;24(7):380–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Tzachanis D, Lafuente EM, Li L, Boussiotis VA. Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk Lymphoma. 2004;45(10):1959–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuo CT, Veselits ML, Leiden JM. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science. 1997;277(5334):1986–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Buckley AF, Kuo CT, Leiden JM. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat Immunol. 2001;2(8):698–704.PubMedCrossRefGoogle Scholar
  9. 9.
    Di Santo JP. Lung Krupple-like factor: a quintessential player in T cell quiescence. Nat Immunol. 2001;2(8):667–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Coffer PJ. Transcriptional regulation of lymphocyte quiescence: as cunning as a FOX. Trends Immunol. 2003;24(9):470–1. author reply 1.PubMedCrossRefGoogle Scholar
  11. 11.
    Haaland RE, Yu W, Rice AP. Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes. Mol Immunol. 2005;42(5):627–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A, Sareen P, Yang VW, Kaestner KH, Fruman DA. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol. 2008;20(5):671–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Tzachanis D, Boussiotis VA. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle. 2009;8(7):1019–25.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamada T, Park CS, Mamonkin M, Lacorazza HD. Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Kruppel-like factors KLF4 and KLF2. Nat Immunol. 2009;10(6):618–26. PMCID: PMC2774797.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood. 2010;115(3):510–8. PMCID: PMC2810984.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Feng X, Wang H, Takata H, Day TJ, Willen J, Hu H. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat Immunol. 2011;12(6):544–50. PMCID: PMC3631322.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Sci. 2002;27(7):352–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Burgering BM. A brief introduction to FOXOlogy. Oncogene. 2008;27(16):2258–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404(6779):782–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, Lam EW, Burgering BM. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002;22(7):2025–36. PMCID: PMC133681.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22(22):7842–52. PMCID: PMC134724.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Fabre S, Lang V, Harriague J, Jobart A, Unterman TG, Trautmann A, Bismuth G. Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J Immunol. 2005;174(7):4161–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Peng SL. Foxo in the immune system. Oncogene. 2008;27(16):2337–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Jia S, Meng A. Tob genes in development and homeostasis. Dev Dyn. 2007;236(4):913–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, Onda M, Yoshida Y, Nishiyama A, Yamamoto T. Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene. 1996;12(4):705–13.PubMedGoogle Scholar
  27. 27.
    Gowda SD, Stein BS, Mohagheghpour N, Benike CJ, Engleman EG. Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes. J Immunol. 1989;142(3):773–80.PubMedGoogle Scholar
  28. 28.
    McDougal JS, Mawle A, Cort SP, Nicholson JK, Cross GD, Scheppler-Campbell JA, Hicks D, Sligh J. Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T cell activation and expression of the T4 antigen. J Immunol. 1985;135(5):3151–62.PubMedGoogle Scholar
  29. 29.
    Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC. Long-term cultures of HTLV-III–infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science. 1986;231(4740):850–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990;61(2):213–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Zack JA, Haislip AM, Krogstad P, Chen IS. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992;66(3):1717–25.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Borvak J, Chou CS, Bell K, Van Dyke G, Zola H, Ramilo O, Vitetta ES. Expression of CD25 defines peripheral blood mononuclear cells with productive versus latent HIV infection. J Immunol. 1995;155(6):3196–204.PubMedGoogle Scholar
  33. 33.
    Chou CS, Ramilo O, Vitetta ES. Highly purified CD25- resting T cells cannot be infected de novo with HIV-1. Proc Natl Acad Sci U S A. 1997;94(4):1361–5.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ramilo O, Bell KD, Uhr JW, Vitetta ES. Role of CD25+ and CD25-T cells in acute HIV infection in vitro. J Immunol. 1993;150(11):5202–8.PubMedGoogle Scholar
  35. 35.
    Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990;9(5):1551–60.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Stevenson M, Haggerty S, Lamonica CA, Meier CM, Welch SK, Wasiak AJ. Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J Virol. 1990;64(5):2421–5.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol. 2002;76(17):8518–31.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zhou Y, Zhang H, Siliciano JD, Siliciano RF. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol. 2005;79(4):2199–210.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Swiggard WJ, O’Doherty U, McGain D, Jeyakumar D, Malim MH. Long HIV type 1 reverse transcripts can accumulate stably within resting CD4+ T cells while short ones are degraded. AIDS Res Hum Retroviruses. 2004;20(3):285–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, Theodosopoulos T, O’Doherty U. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J Virol. 2005;79(22):14179–88.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    O'Doherty U, Swiggard WJ, Jeyakumar D, McGain D, Malim MH. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol. 2002;76(21):10942–50.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Korin YD, Zack JA. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol. 1999;73(8):6526–32.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Plesa G, Dai J, Baytop C, Riley JL, June CH, O'Doherty U. Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J Virol. 2007;81(24):13938–42.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Vatakis DN, Bristol G, Wilkinson TA, Chow SA, Zack JA. Immediate activation fails to rescue efficient human immunodeficiency virus replication in quiescent CD4+ T cells. J Virol. 2007;81(7):3574–82.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    O'Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol. 2000;74(21):10074–80.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Vatakis DN, Kim S, Kim N, Chow SA, Zack JA. Human immunodeficiency virus integration efficiency and site selection in quiescent CD4+ T cells. J Virol. 2009;83(12):6222–33. PMCID: PMC2687367.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Brady T, Agosto LM, Malani N, Berry CC, O’Doherty U, Bushman F. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS. 2009;23(12):1461–71.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Agosto LM, Yu JJ, Liszewski MK, Baytop C, Korokhov N, Humeau LM, O’Doherty U. The CXCR4-tropic human immunodeficiency virus envelope promotes more-efficient gene delivery to resting CD4+ T cells than the vesicular stomatitis virus glycoprotein G envelope. J Virol. 2009;83(16):8153–62. PMCID: 2715791.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Auewarakul P, Wacharapornin P, Srichatrapimuk S, Chutipongtanate S, Puthavathana P. Uncoating of HIV-1 requires cellular activation. Virology. 2005;337(1):93–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41(7):829–32.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Gelais C, de Silva S, Amie SM, Coleman CM, Hoy H, Hollenbaugh JA, Kim B, Wu L. SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. Retrovirology. 2012;9:105. PMCID: PMC3527137.CrossRefGoogle Scholar
  52. 52.
    Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654–7.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LC, Fernandez-Sesma A, Rutsch F, Simon V, Konig R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 2011;7(12):e1002425. PMCID: PMC3234228.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology. 2012;9:87. PMCID: PMC3494655.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, Konig R, Fackler OT, Keppler OT. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med. 2012;18(11):1682–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M. Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat Med. 2010;16(3):329–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog. 2006;2(7):e68.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, Wijmenga C, Duckett CS, Nabel GJ. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature. 2003;426(6968):853–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Vatakis DN, Nixon CC, Bristol G, Zack JA. Differentially stimulated CD4+ T cells display altered human immunodeficiency virus infection kinetics: implications for the efficacy of antiviral agents. J Virol. 2009;83(7):3374–8. PMCID: 2655565.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Oswald-Richter K, Grill SM, Leelawong M, Unutmaz D. HIV infection of primary human T cells is determined by tunable thresholds of T cell activation. Eur J Immunol. 2004;34(6):1705–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Unutmaz D, KewalRamani VN, Marmon S, Littman DR. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med. 1999;189(11):1735–46. PMCID: PMC2193071.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Thibault S, Tardif MR, Barat C, Tremblay MJ. TLR2 signaling renders quiescent naive and memory CD4+ T cells more susceptible to productive infection with X4 and R5 HIV-type 1. J Immunol. 2007;179(7):4357–66.PubMedCrossRefGoogle Scholar
  63. 63.
    Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood. 2007;110(13):4161–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Saleh S, Wightman F, Ramanayake S, Alexander M, Kumar N, Khoury G, Pereira C, Purcell D, Cameron PU, Lewin SR. Expression and reactivation of HIV in a chemokine induced model of HIV latency in primary resting CD4+ T cells. Retrovirology. 2011;8:80. PMCID: 3215964.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Barat C, Gervais P, Tremblay MJ. Engagement of ICAM-3 provides a costimulatory signal for human immunodeficiency virus type 1 replication in both activated and quiescent CD4+ T lymphocytes: implications for virus pathogenesis. J Virol. 2004;78(12):6692–7. PMCID: PMC416497.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Tardif MR, Tremblay MJ. LFA-1 is a key determinant for preferential infection of memory CD4+ T cells by human immunodeficiency virus type 1. J Virol. 2005;79(21):13714–24. PMCID: PMC1262559.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Eckstein DA, Penn ML, Korin YD, Scripture-Adams DD, Zack JA, Kreisberg JF, Roederer M, Sherman MP, Chin PS, Goldsmith MA. HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues. Immunity. 2001;15(4):671–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Baldwin GC, Roth MD, Tashkin DP. Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol. 1998;83(1–2):133–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC. Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis. 2002;185(5):701–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Cole SW, Korin YD, Fahey JL, Zack JA. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol. 1998;161(2):610–6.PubMedGoogle Scholar
  71. 71.
    Kim SG, Jung JB, Dixit D, Rovner Jr R, Zack JA, Baldwin GC, Vatakis DN. Cocaine exposure enhances permissiveness of quiescent T cells to HIV infection. J Leukoc Biol. 2013;94(4):835–43. PMCID: PMC3774841.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Hematology-Oncology, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.UCLA AIDS InstituteDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations