GWAS and Meta-Analysis in Aging/Longevity

  • Linda Broer
  • Cornelia M. van DuijnEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 847)


Longevity is an extremely complex phenotype that is determined by environment, life style and genetics. Genome wide association studies (GWAS) have been a powerful tool to identify the genetic origin of other complex outcome with a similar heritability. In this chapter we discuss the findings all GWAS of longevity conducted to date. Various cut-off to define longevity have been used varying from 85+, 90+ and 100+ years and the impact of these difference are addressed in this chapter. The only consistent association emerging from GWAS to data is the APOE gene that has been already identified as a candidate gene. Although (GWAS) have identified biologically plausible genes and pathways, no new loci for longevity have been conclusively proven. A reason for not finding any replicated associations for longevity could be the complexity of the phenotype, although heterogeneity also underlies many other traits for which GWAS has been successful. One may argue that rare variants explain the high heritability of longevity and the segregation of the trait in families. Yet, whole genome analyses of GWAS data still suggest that over 80 % of the heritability is explained by common variants. Although findings of GWAS to date have been disappointing, there is ample opportunity to improve the statistical power of studies to find common variants with small effects. In the near future, joining of the published studies and new ones emerging may bring to surface new loci.


Genome-wide association study APOE Longevity All-cause mortality Genetic signatures 


  1. 1.
    Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031CrossRefPubMedGoogle Scholar
  2. 2.
    Vaupel JW et al (1998) Biodemographic trajectories of longevity. Science 280(5365):855–860CrossRefPubMedGoogle Scholar
  3. 3.
    Suzman R, Riley MW (1985) Introducing the “oldest old”. Milbank Mem Fund Q Health Soc 63(2):177–186CrossRefPubMedGoogle Scholar
  4. 4.
    Arias E (2011) United States life tables, 2007. Natl Vital Stat Rep 59(9):1–60PubMedGoogle Scholar
  5. 5.
    vB Hjelmborg J et al (2006) Genetic influence on human lifespan and longevity. Hum Genet 119(3):312–321CrossRefPubMedGoogle Scholar
  6. 6.
    Herskind AM et al (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323CrossRefPubMedGoogle Scholar
  7. 7.
    McGue M et al (1993) Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 48(6):B237–244CrossRefPubMedGoogle Scholar
  8. 8.
    Kerber RA et al (2001) Familial excess longevity in Utah genealogies. J Gerontol A Biol Sci Med Sci 56(3):B130–139CrossRefPubMedGoogle Scholar
  9. 9.
    Mitchell BD et al (2001) Heritability of life span in the Old Order Amish. Am J Med Genet 102(4):346–352CrossRefPubMedGoogle Scholar
  10. 10.
    Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 67(5):470–479CrossRefPubMedGoogle Scholar
  11. 11.
    McIlhany ML, Shaffer JW, Hines EA Jr (1975) The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J 136(2):57–64PubMedGoogle Scholar
  12. 12.
    Pilia G et al (2006) Heritability of cardiovascular and personality traits in 6148 Sardinians. PLoS Genet 2(8):e132CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Anselmi CV et al (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12(2):95–104CrossRefPubMedGoogle Scholar
  14. 14.
    Bathum L et al (2006) Apolipoprotein e genotypes: relationship to cognitive functioning, cognitive decline, and survival in nonagenarians. J Am Geriatr Soc 54(4):654–658CrossRefPubMedGoogle Scholar
  15. 15.
    Beekman M et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12(2):184–193CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Flachsbart F et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106(8):2700–2705CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Gerdes LU et al (2000) Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a frailty gene, not a longevity gene. Genet Epidemiol 19(3):202–210CrossRefPubMedGoogle Scholar
  18. 18.
    Willcox BJ et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987–13992CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Beekman M et al (2010) Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci U S A 107(42):18046–18049CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Ganna A et al (2013) Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality? Hum Genet 132(5):553–561CrossRefPubMedGoogle Scholar
  21. 21.
    Newman AB et al (2010) A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the cohorts for heart and aging research in genomic epidemiology consortium. J Gerontol A Biol Sci Med Sci 65(5):478–487CrossRefPubMedGoogle Scholar
  22. 22.
    Chi H et al (2000) Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol 20(17):6496–6507CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Deelen J et al (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10(4):686–698CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Schachter F et al (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6(1):29–32CrossRefPubMedGoogle Scholar
  25. 25.
    Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Bertram L et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23CrossRefPubMedGoogle Scholar
  27. 27.
    Nebel A et al (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 132(6–7):324–330CrossRefPubMedGoogle Scholar
  28. 28.
    Malovini A et al (2011) Association study on long-living individuals from Southern Italy identifies rs10491334 in the CAMKIV gene that regulates survival proteins. Rejuvenation Res 14(3):283–291CrossRefPubMedGoogle Scholar
  29. 29.
    Levy D et al (2007) Framingham heart study 100 k project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8(Suppl 1):S3CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Sebastiani P et al (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7(1):e29848CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Hekimi S (2006) How genetic analysis tests theories of animal aging. Nat Genet 38(9):985–991CrossRefPubMedGoogle Scholar
  32. 32.
    Terry DF et al (2008) Disentangling the roles of disability and morbidity in survival to exceptional old age. Arch Intern Med 168(3):277–283CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Gray MD et al (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103CrossRefPubMedGoogle Scholar
  34. 34.
    Eriksson M et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298CrossRefPubMedGoogle Scholar
  35. 35.
    Hitt R et al (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652CrossRefPubMedGoogle Scholar
  36. 36.
    Walter S et al (2011) A genome-wide association study of aging. Neurobiol Aging 32(11):2109 e15–28CrossRefPubMedGoogle Scholar
  37. 37.
    Evert J et al (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 58(3):232–237CrossRefPubMedGoogle Scholar
  38. 38.
    Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lango AH et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838CrossRefGoogle Scholar
  40. 40.
    Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41(12):1243–1246CrossRefPubMedGoogle Scholar
  41. 41.
    von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5(2):197–203CrossRefGoogle Scholar
  42. 42.
    Codd V et al (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45(4):422–427, 427e1–2CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Deelen J et al (2014) Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol 43(3):878–886CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Newman AB et al (2008) A physiologic index of comorbidity: relationship to mortality and disability. J Gerontol A Biol Sci Med Sci 63(6):603–609CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Schork NJ et al (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510Google Scholar
  47. 47.
    Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456(7218):18–21CrossRefPubMedGoogle Scholar
  48. 48.
    Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69(1):124–137CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of EpidemiologyErasmus University Medical CenterRotterdamNetherlands

Personalised recommendations