Cannabinoid-Opioid Interactions

  • Michael L. Miller
  • Benjamin Chadwick
  • Claudia V. Morris
  • Michael Michaelides
  • Yasmin L. Hurd


The growing use of cannabis in western societies is of significant concern especially considering that its consumption has increased in teens who are most at risk for developing addictive disorders and other psychiatric illnesses linked to early cannabis exposure. Unfortunately recent years have also seen a surge in the abuse of opioid drugs, a phenomenon often predated by early cannabis use. Moreover, many abusers find greater reward by combining use of cannabis with opioids such as heroin. These patterns suggest possible synergistic interactions between cannabinoid and opioid systems underlying addiction and related psychiatric disorders. This chapter reviews neurobiological systems relevant to reward, motivation and emotional regulation in which cannabinoids and opioids interact.


CB1 receptor THC Endocannabinoids Heroin Cannabis dependence Co-abuse Endorphin Enkephalin Dynorphin PENK PDYN 


  1. 1.
    Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE. Monitoring the Future national results on drug use: 2012 Overview, Key Findings on Adolescent Drug Use. Institute for Social Research, The University of Michigan. Ann Arbor. 2013.Google Scholar
  2. 2.
    SAMHSA. Results from the 2012 National Survey on Drug Use and Health: summary of National Findings. Substance Abuse and Mental Health Services Administration, Rockville, MD. 2013.Google Scholar
  3. 3.
    EMCDDA. Annual report on the state of the drugs problem in Europe. Publications Office of the European Union, Luxembourg; 2012.Google Scholar
  4. 4.
    Lynskey MT, Heath AC, Bucholz KK, Slutske WS, Madden PA, Nelson EC, Statham DJ, Martin NG. Escalation of drug use in early-onset cannabis users vs co-twin controls. JAMA. 2003;289(4):427–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Fergusson DM, Horwood LJ. Does cannabis use encourage other forms of illicit drug use? Addiction. 2000;95(4):505–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Agrawal A, Neale MC, Prescott CA, Kendler KS. A twin study of early cannabis use and subsequent use and abuse/dependence of other illicit drugs. Psychol Med. 2004;34(7):1227–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Spano MS, Fadda P, Fratta W, Fattore L. Cannabinoid-opioid interactions in drug discrimination and self-administration: effect of maternal, postnatal, adolescent and adult exposure to the drugs. Curr Drug Targets. 2010;11(4):450–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Morris CV, DiNieri JA, Szutorisz H, Hurd YL. Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment. Eur J Neurosci. 2011;34(10):1574–83.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chadwick B, Miller ML, Hurd YL. Cannabis use during adolescent development: susceptibility to psychiatric illness. Front Psychiatry. 2013;4:129.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10. Forum on “Cannabis action on opioid receptors”, Cannabis Discussion Forum. (2009). Accessed Jan 2014.
  11. 11.
    Navarro M, Carrera MRA, Fratta W, Valverde O, Cossu G, Fattore L, Chowen JA, Gomez R, del Arco I, Villanua MA, Maldonado R, Koob GF, de Fonseca FR. Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci. 2001;21(14):5344–50.PubMedGoogle Scholar
  12. 12.
    Cossu G, Ledent C, Fattore L, Imperato A, Bohme GA, Parmentier M, Fratta W. Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res. 2001;118(1):61–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283(5400):401–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O. Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. Eur J Neurosci. 2000;12(11):4038–46.Google Scholar
  15. 15.
    Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology. 2007;32(3):607–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Tomasiewicz HC, Jacobs MM, Wilkinson MB, Wilson SP, Nestler EJ, Hurd YL. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol Psychiatry. 2012;72(10):803–10.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Solinas M, Panlilio LV, Goldberg SR. Exposure to ∆9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin’s reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology. 2004;29(7):1301–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh ME, McGregor IS, Mallet PE. Perinatal exposure to ∆9-Tetrahydrocannabinol alters heroin-induced place conditioning and fos-immunoreactivity. Neuropsychopharmacology. 2006;31(1):58–69.PubMedGoogle Scholar
  19. 19.
    Biscaia M, Fernandez B, Higuera-Matas A, Miguens M, Viveros MP, Garcia-Lecumberri C, Ambrosio E. Sex-dependent effects of periadolescent exposure to the cannabinoid agonist CP-55,940 on morphine self-administration behaviour and the endogenous opioid system. Neuropharmacology. 2008;54(5):863–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M. Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience. 1994;63(3):637–52.PubMedCrossRefGoogle Scholar
  22. 22.
    den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A. 2012;109(9):3534–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153(2):240–51.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Brusco A, Tagliaferro PA, Saez T, Onaivi ES. Ultrastructural localization of neuronal brain CB2 cannabinoid receptors. Ann NY Acad Sci. 2008;1139:450–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83(3):1017–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res. 1997;38(12):2383–98.PubMedGoogle Scholar
  27. 27.
    Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163(3):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384(6604):83–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids. 2002;121(1–2):149–58.PubMedCrossRefGoogle Scholar
  30. 30.
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A. 2002;99(16):10819–24.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, Freund TF. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci. 2004;20(2):441–58.PubMedCrossRefGoogle Scholar
  32. 32.
    De Carvalho CR, Pamplona FA, Cruz JS, Takahashi RN. Endocannabinoids underlie reconsolidation of hedonic memories in Wistar rats. Psychopharmacology (Berl). 2013;231(7):1417–25.CrossRefGoogle Scholar
  33. 33.
    Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984;7:223–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Calò G, Lambert DG, Guerrini R. Chapter 215—Nociceptin/Orphanin FQ. In: Kastin AJ, editor. Handbook of biologically active peptides. 2nd edn. Boston: Academic; 2013. pp. 1577–1585.CrossRefGoogle Scholar
  35. 35.
    Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther. 1993;264(1):489–95.PubMedGoogle Scholar
  36. 36.
    Shippenberg TS, Bals-Kubik R, Herz A. Motivational properties of opioids: evidence that an activation of δ-receptors mediates reinforcement processes. Brain Res. 1987;436(2):234–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Pfeiffer A, Brandt V, Herz A. Psychotomimesis mediated by κ opiate receptors. Science. 1986;233:774–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R. Motivational effects of cannabinoids are mediated by μ-opioid and κ-opioid receptors. J Neurosci. 2002;22(3):1146–54.PubMedGoogle Scholar
  39. 39.
    Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP. ∆9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci. 2001;13(9):1816–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Koob GF. Neural mechanisms of drug reinforcement. Ann NY Acad Sci. 1992;654:171–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Everitt BJ, Wolf ME. Psychomotor stimulant addiction: a neural systems perspective. J Neurosci. 2002;22(9):3312–20.PubMedGoogle Scholar
  42. 42.
    Haber SN, Fudge JL. The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol. 1997;11(4):323–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Moine C, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A. 1991;88:4205–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci U S A. 1990;87(1):230–4.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gerfen CR, Enber TM, Susel Z, Chase TN, Monsma FJ, Mahan LC, Sibley DR. D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE. On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res. 1977;135(2):315–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Vincent SR, Hokfelt T, Christensson I, Terenius L. Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett. 1982;33(2):185–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Cuello AC, Paxinos G. Evidence for a long Leu-enkephalin striopallidal pathway in rat brain. Nature. 1978;271(5641):178–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou L, Furuta T, Kaneko T. Chemical organization of projection neurons in the rat accumbens nucleus and olfactory tubercle. Neuroscience. 2003;120(3):783–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann SN, de Kerchove d’Exaerde A. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci. 2009;12(4):393–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A. 2007;104(41):16311–16.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M. Genetically determined differences in learning from errors. Science. 2007;318(5856):1642–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Sano H, Yasoshima Y, Matsushita N, Kaneko T, Kohno K, Pastan I, Kobayashi K. Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci. 2003;23(27):9078–88.PubMedGoogle Scholar
  54. 54.
    Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330(6002):385–90.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rodriguez JJ, Mackie K, Pickel VM. Ultrastructural localization of the CB1 cannabinoid receptor in μ-opioid receptor patches of the rat Caudate Putamen nucleus. J Neurosci. 2001;21:823–33.PubMedGoogle Scholar
  56. 56.
    Pickel VM, Chan J, Kash TL, Rodriguez JJ, MacKie K. Compartment-specific localization of cannabinoid 1 (CB1) and μ-opioid receptors in rat nucleus accumbens. Neuroscience. 2004;127(1):101–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Canals M, Milligan G. Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem. 2008;283(17):11424–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Blume LC, Bass CE, Childers SR, Dalton GD, Roberts DC, Richardson JM, Xiao R, Selley DE, Howlett AC. Striatal CB1 and D2 receptors regulate expression of each other, CRIP1A and delta opioid systems. J Neurochem. 2013;124(6):808–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci. 1997;17(14):5327–33.PubMedGoogle Scholar
  60. 60.
    Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol. 2005;67(5):1697–704.PubMedCrossRefGoogle Scholar
  61. 61.
    Jarrahian A, Watts VJ, Barker EL. D2 dopamine receptors modulate Gα-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther. 2004;308(3):880–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Rios C, Gomes I, Devi LA. μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol. 2006;148(4):387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hurd YL, Herkenham M. The human neostriatum shows compartmentalization of neuropeptide gene expression in dorsal and ventral regions: an in situ hybridization histochemical analysis. Neuroscience. 1995;64(3):571–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Guttenberg ND, Klop H, Minami M, Satoh M, Voorn P. Co-localization of μ opioid receptor is greater with dynorphin than enkephalin in rat striatum. Neuroreport. 1996;7(13):2119–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Pugh G Jr, Abood ME, Welch SP. Antisense oligodeoxynucleotides to the κ-1 receptor block the antinociceptive effects of ∆9-THC in the spinal cord. Brain Res. 1995;689(1):157–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Pugh G Jr, Smith PB, Dombrowski DS, Welch SP. The role of endogenous opioids in enhancing the antinociception produced by the combination of ∆9-tetrahydrocannabinol and morphine in the spinal cord. J Pharmacol Exp Ther. 1996;279(2):608–16.PubMedGoogle Scholar
  67. 67.
    Pugh G Jr, Mason DJ Jr, Combs V, Welch SP. Involvement of dynorphin B in the antinociceptive effects of the cannabinoid CP55,940 in the spinal cord. J Pharmacol Exp Ther. 1997;281(2):730–7.PubMedGoogle Scholar
  68. 68.
    Houser SJ, Eads M, Embrey JP, Welch SP. Dynorphin B and spinal analgesia: induction of antinociception by the cannabinoids CP55,940, ∆9-THC and anandamide. Brain Res. 2000;857(1–2):337–42.Google Scholar
  69. 69.
    Corchero J, Avila MA, Fuentes JA, Manzanares J. Δ-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sci. 1997;61(4):PL 39–43.CrossRefGoogle Scholar
  70. 70.
    Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA. Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Brain Res Mol Brain Res. 1998;55(1):126–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Corchero J, Fuentes JA, Manzanares J. Δ9-Tetrahydrocannabinol increases proopiomelanocortin gene expression in the arcuate nucleus of the rat hypothalamus. Eur J Pharmacol. 1997;323(2–3):193–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang X, Dow-Edwards D, Anderson V, Minkoff H, Hurd YL. Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. Pharmacogenomics J. 2006;6(4):255–64.PubMedGoogle Scholar
  73. 73.
    Spano MS, Ellgren M, Wang X, Hurd YL. Prenatal cannabis exposure increases heroin seeking with allostatic changes in limbic enkephalin systems in adulthood. Biol Psychiatry. 2007;61(4):554–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Perez-Rosado A, Manzanares J, Fernandez-Ruiz J, Ramos JA. Prenatal ∆9-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences. Brain Res Dev Brain Res. 2000;120(1):77–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Morel LJ, Giros B, Dauge V. Adolescent exposure to chronic delta-9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats. Neuropsychopharmacology. 2009;34(11):2469–76.PubMedCrossRefGoogle Scholar
  76. 76.
    Corchero J, Garcia-Gil L, Manzanares J, Fernandez-Ruiz JJ, Fuentes JA, Ramos JA. Perinatal delta9-tetrahydrocannabinol exposure reduces proenkephalin gene expression in the caudate-putamen of adult female rats. Life Sci. 1998;63(10):843–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Corchero J, Romero J, Berrendero F, Fernandez-Ruiz J, Ramos JA, Fuentes JA, Manzanares J. Time-dependent differences of repeated administration with ∆9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by μ-opioid and CB1-cannabinoid receptors in the caudate-putamen. Brain Res Mol Brain Res. 1999;67(1):148–57.PubMedCrossRefGoogle Scholar
  78. 78.
    Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(101927):1783–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry. 1999;156(9):1440–3.PubMedGoogle Scholar
  81. 81.
    Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ, Pappas NS, Pascani K. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology. 1997;16:174–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Volkow ND, Fowler JS, Wang GJ, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry. 2004;9(6):557–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Jutras-Aswad D, Jacobs MM, Yiannoulos G, Roussos P, Bitsios P, Nomura Y, Liu X, Hurd YL. Cannabis-dependence risk relates to synergism between neuroticism and proenkephalin snps associated with amygdala gene expression: case-control study. PLoS ONE. 2012;7(6):e39243.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nikoshkov A, Drakenberg K, Wang X, Horvath MC, Keller E, Hurd YL. Opioid neuropeptide genotypes in relation to heroin abuse: dopamine tone contributes to reversed mesolimbic proenkephalin expression. Proc Natl Acad Sci U S A. 2008;105(2):786–91.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gunduz-Cinar O, Hill MN, McEwen BS, Holmes A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci. 2013;34(11):637–44.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav. 2005;81(2):331–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci. 2001;21(23):9506–18.PubMedGoogle Scholar
  88. 88.
    McDonald AJ, Mascagni F. Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience. 2001;107(4):641–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci. 1999;11(12):4213–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18(1):22–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sar M, Stumpf WE, Miller RJ, Chang KJ, Cuatrecasas P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol. 1978;182(1):17–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Veinante P, Stoeckel ME, Freund-Mercier MJ. GABA- and peptide-immunoreactivities co-localize in the rat central extended amygdala. Neuroreport. 1997;8(13):2985–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Erb S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(5):798–807.PubMedCrossRefGoogle Scholar
  94. 94.
    Kung JC, Chen TC, Shyu BC, Hsiao S, Huang AC. Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder. J Biomed Sci. 2010;17:29.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Jutras-Aswad D, DiNieri JA, Harkany T, Hurd YL. Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur Arch Psychiatry Clin Neurosci. 2009;259(7):395–412.PubMedCrossRefGoogle Scholar
  96. 96.
    Fitzgerald ML, Shobin E, Pickel VM. Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(1):21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Zahm DS, Jensen SL, Williams ES, Martin JR 3rd. Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell. Eur J Neurosci. 1999;11(4):1119–26.PubMedCrossRefGoogle Scholar
  98. 98.
    Fudge JL, Haber SN. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience. 2000;97(3):479–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12(2):483–8.PubMedGoogle Scholar
  100. 100.
    Solinas M, Zangen A, Thiriet N, Goldberg SR. β-endorphin elevations in the ventral tegmental area regulate the discriminative effects of ∆9-tetrahydrocannabinol. Eur J Neurosci. 2004;19(12):3183–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Rashidy-Pour A, Pahlevani P, Vaziri A, Shaigani P, Zarepour L, Vafaei AA, Haghparast A. Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model. Behav Brain Res. 2013;247:259–67.PubMedCrossRefGoogle Scholar
  102. 102.
    Singh ME, Verty AN, Price I, McGregor IS, Mallet PE. Modulation of morphine-induced Fos-immunoreactivity by the cannabinoid receptor antagonist SR 141716. Neuropharmacology. 2004;47(8):1157–69.PubMedCrossRefGoogle Scholar
  103. 103.
    Fattore L, Vigano D, Fadda P, Rubino T, Fratta W, Parolaro D. Bidirectional regulation of mu-opioid and CB1-cannabinoid receptor in rats self-administering heroin or WIN 55,212-2. Eur J Neurosci. 2007;25(7):2191–200.PubMedCrossRefGoogle Scholar
  104. 104.
    Allen K, McGregor IS, Hunt GE, Singh ME, Mallet PE. Regional differences in naloxone modulation of ∆9-THC induced Fos expression in rat brain. Neuropharmacology. 2003;44(2):264–74.Google Scholar
  105. 105.
    Tanda G, Pontieri FE, Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science. 1997;276(5321):2048–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael L. Miller
    • 1
  • Benjamin Chadwick
    • 1
  • Claudia V. Morris
    • 1
  • Michael Michaelides
    • 1
  • Yasmin L. Hurd
    • 1
    • 2
  1. 1.Departments of Neuroscience and Psychiatry, Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Icahn School of Medicine at Mount SinaiHess Center for Science and MedicineNew YorkUSA

Personalised recommendations