The Neuropathology of Autism

Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Most researchers agree that autism spectrum disorders (ASD) comprise a group of developmental conditions whose pathological substratum resides in the brain. Despite the significance of neuropathological research in ASD, relatively few studies have been performed on the subject. The limited number of studies may be accounted, in part, by the scarcity of available tissues in different brain banks. Furthermore, variability within each patient population in regards to pre-agonal/agonal conditions, medications, comorbidity (e.g., seizures), and postmortem interval may all account for dissimilar findings among the limited number of reported studies. Only recently has a clear picture begun to emerge as to the neuropathological underpinnings of ASD. The presence of heterotopias, laminar effacement, and minicolumnopathy suggest that heterochronic divisions of periventricular germinal cells may provide for the asynchronous development of pyramidal cells and interneurons within the cerebral cortex. A similar defect within the rhombic lip may help explain brainstem and cerebellar malformations. Autism spectrum disorders are multifactorial conditions wherein a genetic proclivity and environmental stressors act at particular times during brain development to provide an autistic phenotype.

Keywords

Neuropathology Brain Cerebral cortex Minicolumns Cortical modularity Cerebellum Brainstem Axons Brain weight 

References

  1. Aarkrog T (1968) Organic factors in infantile psychoses and borderline psychoses: retrospective study of 45 cases subjected to pneumoencephalography. Dan Med Bull 15:283–288PubMedGoogle Scholar
  2. Arin DM, Bauman ML, Kemper TL (1991) The distribution of Purkinje cell loss in the cerebellum in autism. Neurology 41(3 Suppl. 1):307Google Scholar
  3. Avino TA, Hutsler JJ (2010) Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 1360:138–146CrossRefPubMedGoogle Scholar
  4. Azmitia EC, Singh JS, Hou XP, Wegiel J (2011) Dystrophic serotonin axons in postmortem brains from young autism patients. Anat Rec 294:1653–1662CrossRefGoogle Scholar
  5. Bailey A, Luthert P, Bolton P, Le Couteur A, Rutter M, Harding B (1993) Autism and megalencephaly. Lancet 341:1225–1226CrossRefPubMedGoogle Scholar
  6. Bailey A, Luthert P, Dean A et al (1998). A clinicopathological study of autism. Brain 121:889–905CrossRefPubMedGoogle Scholar
  7. Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87:791–796PubMedGoogle Scholar
  8. Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874CrossRefPubMedGoogle Scholar
  9. Bauman ML, Kemper TL (1994) Neuroanatomical observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, pp 119–145Google Scholar
  10. Bauman ML, Kemper TL (1996) Observations on the Purkinje cells in the cerebellar vermis in autism. J Neuropathol Exp Neurol 55:613CrossRefGoogle Scholar
  11. Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism, 2nd edn. Johns Hopkins University Press, Baltimore, pp 121–135Google Scholar
  12. Blumbergs P, Reilly P, Vink R (2008) Trauma. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology. Hodder Arnold, London, pp 733–832Google Scholar
  13. Briacombe MB, Pickett R, Pickett J (2007) Autism postmortem neuroinformatic resource: the autism tissue program (ATP) informatics portal. J Autism Dev Disord 37:574–579CrossRefGoogle Scholar
  14. Buxhoeveden D, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17CrossRefPubMedGoogle Scholar
  15. Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, CambridgeGoogle Scholar
  16. Casanova MF (2013) The minicolumnopathy of autism. In: Buxbaum JD, Hof PR (eds) The neuroscience of autism spectrum disorders. Academic, London, pp 327–333CrossRefGoogle Scholar
  17. Casanova MF, Buxhoeveden DP, Switala A, Roy E (2002a) Minicolumnar pathology in autism. Neurology 58:428–432CrossRefPubMedGoogle Scholar
  18. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol 17:515–521CrossRefPubMedGoogle Scholar
  19. Casanova MF, Van Kooten IAJ, Switala AE et al (2006a) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303CrossRefPubMedGoogle Scholar
  20. Casanova MF, Van Kooten I, Switala AE et al (2006b). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133CrossRefGoogle Scholar
  21. Casanova MF, Trippe J 2nd, Switala AE (2007) A temporal continuity to the vertical organization of the human neocortex: a study spanning prenatal development and aging. Cereb Cortex 17:130–137CrossRefPubMedGoogle Scholar
  22. Casanova MF, Konkachbaev AI, Switala AE, Elmaghraby AD (2008) Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays. J Neurosci Methods 168:367–372CrossRefPubMedCentralPubMedGoogle Scholar
  23. Casanova MF, El-Baz A, Vanbogaert E, Narahari P, Switala A (2010). A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458CrossRefPubMedGoogle Scholar
  24. Casanova MF, El-Baz AS, Kamat SS et al (2013) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1(1):67CrossRefPubMedCentralPubMedGoogle Scholar
  25. Chan KK, Lowe J (2002) Techniques in neuropathology. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, London, pp 371–414Google Scholar
  26. Coleman P, Romano J, Lapham L, Simon W (1985) Cell counts in cerebral cortex of an autistic patients. J Autism Dev Disord 15:245–255CrossRefPubMedGoogle Scholar
  27. Courchesne E, Müller RA, Saitoh O (1999) Brain weight in autism: normal in the majority of cases, megalencephalic in rare cases. Neurology 52:1057–1059CrossRefPubMedGoogle Scholar
  28. Courchesne E, Mouton PR, Calhoun ME et al (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010CrossRefPubMedGoogle Scholar
  29. Crooks R, Mitchel T, Thorn M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41:63–73CrossRefPubMedGoogle Scholar
  30. Darby JK (1976) Neuropathologic aspects of psychosis in children. J Autism Child Schizophr 6:339–352CrossRefPubMedGoogle Scholar
  31. Darby JK, Clark L (1992) Autism syndrome as a final common pathway of behavioral expression for many organic disorders. Am J Psychiatry 149:146CrossRefPubMedGoogle Scholar
  32. DeFelipe J, Hendry S, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673CrossRefPubMedGoogle Scholar
  33. Fatemi SH, Halt AR, Realmuto G Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22:171–175CrossRefPubMedGoogle Scholar
  34. Gillberg C, Steffenburg S (1989) Autistic behavior in Moebius syndrome. Acta Paediatr Scand 78:314–316CrossRefPubMedGoogle Scholar
  35. Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 82:321–326CrossRefPubMedGoogle Scholar
  36. Hutsler JJ, Avino TA (2013) Sigmoid fits to located and characterized cortical boundaries in human cerebral cortex. J Neurosci Methods 212:242–246CrossRefPubMedGoogle Scholar
  37. Hutsler JJ, Love T, Zhang H (2007) Histologic and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457CrossRefPubMedGoogle Scholar
  38. Itabashi HH, Andrews JM, Tomiyasu U, Erlich SS, Sathyavagiswaran L (2007) Forensic neuropathology: a practical review of the fundamentals. Elsevier, New YorkGoogle Scholar
  39. Jordan BD (2009) Brain injury in boxing. Clin Sports Med 28:561–578CrossRefPubMedGoogle Scholar
  40. Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187PubMedGoogle Scholar
  41. Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64:124–129CrossRefPubMedGoogle Scholar
  42. Kulesza RJ, Mangunay K (2008) Morphological features of the medial superior olive in autism. Brain Res 1200:132–137CrossRefPubMedGoogle Scholar
  43. Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206–210CrossRefPubMedGoogle Scholar
  44. Lawrence YA, Kemper TL, Bauman ML, Blatt GJ (2010) Parvalbumin-, calbindin-, and caretinin-immunoreactive hippocampal interneurn density in autism. Acta Neurol Scand 121:99–108CrossRefPubMedGoogle Scholar
  45. Lorente de Nó R (1938) The cerebral cortex: architecture, intracortical connections, and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–339Google Scholar
  46. Ludwig J (2002) Handbook of autopsy practice. Humana Press, TotowaCrossRefGoogle Scholar
  47. Martchek M, Thevarkunnel S, Bauman M, Blatt G, Kemper T (2006) Lack of evidence of neuropathology in the locus coeruleus in autism. Acta Neuropathol 111:497–499CrossRefPubMedGoogle Scholar
  48. Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain: cortical organization and the group-selective theory of higher brain function. MIT Press, Cambridge, pp 7–51Google Scholar
  49. Mountcastle VB (1998) Perceptual neuroscience: the cerebral cortex. Harvard University Press, CambridgeGoogle Scholar
  50. Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  51. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR 23:1074–1087PubMedGoogle Scholar
  52. Pickett J, London E (2005) The neuropathology of autism: a review. J Neuropathol Exp Neurol 64:925–935CrossRefPubMedGoogle Scholar
  53. Raymond GV, Bauman ML, Kemper TL (1996) Hippocampus in autism: a Golgi analysis. Acta Neuropathol 91:117–119CrossRefPubMedGoogle Scholar
  54. Redcay E, Courchesne E (2005) When is the brain enlarged in autism? A metaanalysis of all brain size reports. Biol Psychiatry 58:1–9CrossRefPubMedGoogle Scholar
  55. Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origins for autism: developmental abnormalities of the cranial nerve motor nuclei. J Comp Neurol 370:247–261CrossRefPubMedGoogle Scholar
  56. Santos M, Uppal N, Butti C et al (2011) Von Economo neurons in autism: a stereological study of the frontoinsular cortex in children. Brain Res 1380:206–217CrossRefPubMedGoogle Scholar
  57. Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski T, de Vos K, Amunts K, Zilles K (2005) Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol 210:373–386CrossRefPubMedGoogle Scholar
  58. Schmitz C, Rezaie P (2008) The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 34:4–11PubMedGoogle Scholar
  59. Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329CrossRefPubMedCentralPubMedGoogle Scholar
  60. Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679CrossRefPubMedGoogle Scholar
  61. Schumann CM, Buonocore MH, Amaral DG (2001) Magnetic resonance imaging of the postmortem brain. J Autism Dev Disord 31:561–568CrossRefPubMedGoogle Scholar
  62. Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684CrossRefPubMedGoogle Scholar
  63. Soto-Ares G, Delmaire C, Deries B, ValleeL, Pruvo JP (2000) Cerebellar cortical dysplasia: MR findings in a complex entity. AJNR 21:1511–1519PubMedGoogle Scholar
  64. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35CrossRefPubMedCentralPubMedGoogle Scholar
  65. Szentágothai J, Arbib MA (1975) Conceptual models of neural organization. MIT Press, CambridgeGoogle Scholar
  66. Thevarkunnel S, Martchek MA, Kemper TL, Bauman ML, Blatt GJ (2004) A neuroanatomical study of the brainstem nuclei in autism. Abstr Soc Neurosci 1028.10Google Scholar
  67. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81CrossRefPubMedGoogle Scholar
  68. Von Bonin G Mehler W (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9CrossRefGoogle Scholar
  69. Von Economo CF, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, WienGoogle Scholar
  70. Wegiel J, Kuchna I, Nowicki K et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770CrossRefPubMedCentralPubMedGoogle Scholar
  71. Weidenheim KM, Goodman L, Dickson DW, Gillberg C, Rastam M, Rapin I (2001) Etiology and pathophysiology of autistic behavior: clues from two cases with an unusual variant of neuroaxonal dystrophy. J Child Neurol 16:809–819CrossRefPubMedGoogle Scholar
  72. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28K. Cerebellum 7:406–416CrossRefPubMedGoogle Scholar
  73. Williams RS, Hauser SI, Purpura DP, DeLong GR, Swisher CN (1980) Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol 37:749–753CrossRefPubMedGoogle Scholar
  74. Yates AJ, Thelmo W, Pappius HM (1975) Postmortem changes in the chemistry and histology of normal and edematous brains. Am J Pathol 79:555–564PubMedCentralPubMedGoogle Scholar
  75. Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations