The Disease of Obesity

Chapter
Part of the Endocrine Updates book series (ENDO)

Abstract

Obesity is defined as “abnormal or excessive fat accumulation that may impair health.” The extent to which obesity has impacted the USA and world population is astounding: More than one third of US adults (35.7 %) and approximately 17 % (or 12.5 million) of children and adolescents aged 2–19 years are obese. The alarming increase in obesity prevalence, the consequences on the personal health and on the health-care system (obesity contributes to over 112,000 deaths annually), and the relative lack of success in various interventions is undeniable. In June 2013, the American Medical Association recognized obesity as a disease requiring a range of medical interventions to advance obesity treatment and prevention.

Keywords

Overweight Diabetes mellitus Childhood obesity Anorexia nervosa 

References

  1. 1.
    World Health Organization. Obesity and overweight. Fact sheet no.311. 2013. http://www.who.int/mediacentre/factsheets/fs311/en/2013. Accessed: 25 Jan 2014.
  2. 2.
    Prevention CDC. Overweight and obesity 2013. http://www.cdc.gov/obesity/data/facts.html2012. Accessed: 2 Feb 2014.
  3. 3.
    Neel JV. The “thrifty genotype” in 1998. Nutr Rev. 1999;57(5 Pt 2):S2–9. PubMed PMID: 10391020.PubMedGoogle Scholar
  4. 4.
    Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531–43. PubMed PMID: 11239410.Google Scholar
  5. 5.
    Hill SE. Eating to excess: the meaning of gluttony and the fat body in the ancient world. Santa Barbara: Praeger; 2011.Google Scholar
  6. 6.
    McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913. doi:10.1080/10408390903372599. PubMed PMID: 19960394; PubMed Central PMCID: PMCPMC2932668.Google Scholar
  7. 7.
    Wright SM, Aronne LJ. Causes of obesity. Abdom Imaging. 2012;37(5):730–2. doi:10.1007/s00261-012-9862-x. PubMed PMID: 22426851.Google Scholar
  8. 8.
    Bergman RN. A better index of body adiposity. Obesity (Silver Spring). 2012;20(6):1135. doi:10.1038/oby.2012.99. PubMed PMID: 22627975.Google Scholar
  9. 9.
    Heymsfield SB. Development of imaging methods to assess adiposity and metabolism. Int J Obes (Lond). 2008;32(Suppl 7):S76–82. doi:10.1038/ijo.2008.242. PubMed PMID: 19136995.Google Scholar
  10. 10.
    Xu Y, Elmquist JK, Fukuda M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann N Y Acad Sci. 2011;1243:1–14. doi:10.1111/j.1749-6632.2011.06248.x. PubMed PMID: 22211889; PubMed Central PMCID: PMCPMC3467098.Google Scholar
  11. 11.
    Dietrich MO, Horvath TL. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 2013;36(2):65–73. doi:10.1016/j.tins.2012.12.005. PubMed PMID: 23318157.Google Scholar
  12. 12.
    Woods SC. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 2009;9(6):489–98. doi:10.1016/j.cmet.2009.04.007. PubMed PMID: 19490904; PubMed Central PMCID: PMCPMC3090647.Google Scholar
  13. 13.
    Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116(2):337–50. PubMed PMID: 14744442.Google Scholar
  14. 14.
    Lustig RH. The neuroendocrine control of energy balance. In: Freemark M, editor. Contemporary endocrinology: Pediatric obesity: etiology, pathogenesis, and treatment. New York: Springer 2010. pp. 15–32.Google Scholar
  15. 15.
    Raybould HE. Mechanisms of CCK signaling from gut to brain. Curr Opin Pharmacol. 2007;7(6):570–4. doi:10.1016/j.coph.2007.09.006. PubMed PMID: 17954038; PubMed Central PMCID: PMCPMC2692370.Google Scholar
  16. 16.
    Dockray GJ. Cholecystokinin and gut-brain signalling. Regul Pept. 2009;155(1–3):6–10. doi:10.1016/j.regpep.2009.03.015. PubMed PMID: 19345244.Google Scholar
  17. 17.
    Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6(2):153–69. PubMed PMID: 15777186.Google Scholar
  18. 18.
    Chambers AP, Sandoval DA, Seeley RJ. Integration of satiety signals by the central nervous system. Curr Biol. 2013;23(9):R379–88. doi:10.1016/j.cub.2013.03.020. PubMed PMID: 23660361; PubMed Central PMCID: PMCPMC3688053.Google Scholar
  19. 19.
    Cardona Cano S, Merkestein M, Skibicka KP, Dickson SL, Adan RA. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy. CNS Drugs. 2012;26(4):281–96. doi:10.2165/11599890-000000000-00000. PubMed PMID: 22452525.Google Scholar
  20. 20.
    Torekov SS, Madsbad S, Holst JJ. Obesity—an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev. 2011;12(8):593–601. doi:10.1111/j.1467-789X.2011.00860.x. PubMed PMID: 21401851.Google Scholar
  21. 21.
    Verdich C, Flint A, Gutzwiller JP, Näslund E, Beglinger C, Hellström PM, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86(9):4382–9. PubMed PMID: 11549680.Google Scholar
  22. 22.
    Näslund E, King N, Mansten S, Adner N, Holst JJ, Gutniak M, et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br J Nutr. 2004;91(3):439–46. doi:10.1079/BJN20031064. PubMed PMID: 15005830.Google Scholar
  23. 23.
    Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. PubMed PMID: 22236411; PubMed Central PMCID: PMCPMC3256253.Google Scholar
  24. 24.
    Foley JE, Jordan J. Weight neutrality with the DPP-4 inhibitor, vildagliptin: mechanistic basis and clinical experience. Vasc Health Risk Manag. 2010;6:541–8. PubMed PMID: 20730070; PubMed Central PMCID: PMCPMC2922315.Google Scholar
  25. 25.
    De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14(5):700–6. doi:S1550–4131(11)00356–1 [pii]10.1016/j.cmet.2011.09.010. PubMed PMID: 22000927; PubMed Central PMCID: PMCPMC3267038.Google Scholar
  26. 26.
    Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): Part I. Distribution, release and actions. Obes Surg. 2006;16(5):651–8. doi:10.1381/096089206776944959. PubMed PMID: 16687037.Google Scholar
  27. 27.
    Friedman JM. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr. 2009;89(3):973S-9S. doi: 10.3945/ajcn.2008.26788B. PubMed PMID: 19190071; PubMed Central PMCID: PMCPMC2667654.Google Scholar
  28. 28.
    Jung CH, Kim MS. Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res. 2013;36(2):201–7. doi:10.1007/s12272-013-0020-y. PubMed PMID: 23359004.Google Scholar
  29. 29.
    Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282(5738):503–5. PubMed PMID: 116135.Google Scholar
  30. 30.
    Vogt MC, Brüning JC. CNS insulin signaling in the control of energy homeostasis and glucose metabolism—from embryo to old age. Trends Endocrinol Metab. 2013;24(2):76–84. doi:10.1016/j.tem.2012.11.004. PubMed PMID: 23265947.Google Scholar
  31. 31.
    Sisley S, Sandoval D. Hypothalamic control of energy and glucose metabolism. Rev Endocr Metab Disord. 2011;12(3):219–33. doi:10.1007/s11154-011-9189-x. PubMed PMID: 21695389.Google Scholar
  32. 32.
    Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7. PubMed PMID: 11210998.Google Scholar
  33. 33.
    Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab. 2004;89(6):2583–9. doi:10.1210/jc.2004-0535. PubMed PMID: 15181027.Google Scholar
  34. 34.
    Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148(6):563–9. doi:10.1001/jamasurg.2013.5. PubMed PMID: 23571517.Google Scholar
  35. 35.
    Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62(7):569–76. doi:10.1016/j.jacc.2013.05.045. PubMed PMID: 23770180.Google Scholar
  36. 36.
    Bergman RN. Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes. 2007;56(6):1489–501. doi:10.2337/db07–9903. PubMed PMID: 17526912.Google Scholar
  37. 37.
    Bergman RN. New concepts in extracellular signaling for insulin action: the single gateway hypothesis. Recent Prog Horm Res. 1997;52:359–85; discussion 85–7. PubMed PMID: 9238859.Google Scholar
  38. 38.
    Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1–2):127–36. doi:S0303–7207(08)00362–6 [pii]10.1016/j.mce.2008.08.012. PubMed PMID: 18786605.Google Scholar
  39. 39.
    DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23. PubMed PMID: 382871.Google Scholar
  40. 40.
    Bergman RN, Ader M, Huecking K, Van Citters G. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes. 2002;51(Suppl 1):S212–20. PubMed PMID: 11815482.Google Scholar
  41. 41.
    Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care. 2013;36(6):1789–96. doi:10.2337/dc12-1235. PubMed PMID: 23704681; PubMed Central PMCID: PMCPMC3661854.Google Scholar
  42. 42.
    Lorenzo C, Wagenknecht LE, Rewers MJ, Karter AJ, Bergman RN, Hanley AJ, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2098–103. doi:10.2337/dc10-0165. PubMed PMID: 20805282; PubMed Central PMCID: PMCPMC2928371.Google Scholar
  43. 43.
    McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–50. doi:10.1056/NEJMra0906948. PubMed PMID: 21142536.Google Scholar
  44. 44.
    Brown T, Avenell A, Edmunds LD, Moore H, Whittaker V, Avery L, et al. Systematic review of long-term lifestyle interventions to prevent weight gain and morbidity in adults. Obes Rev. 2009;10(6):627–38. doi:OBR641 [pii]10.1111/j.1467–789X.2009.00641.x. PubMed PMID: 19754634.Google Scholar
  45. 45.
    Garb J, Welch G, Zagarins S, Kuhn J, Romanelli J. Bariatric surgery for the treatment of morbid obesity: a meta-analysis of weight loss outcomes for laparoscopic adjustable gastric banding and laparoscopic gastric bypass. Obes Surg. 2009;19(10):1447–55. doi:10.1007/s11695-009-9927-2. PubMed PMID: 19655209.Google Scholar
  46. 46.
    Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42. doi:dc09-2107 [pii]10.2337/dc09-2107. PubMed PMID: 20368410; PubMed Central PMCID: PMCPMC2890335.Google Scholar
  47. 47.
    Pepino MY, Bradley D, Eagon JC, Sullivan S, Abumrad NA, Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity (Silver Spring). 2013. doi:10.1002/oby.20649. PubMed PMID: 24167016.Google Scholar
  48. 48.
    Miras AD, le Roux CW. Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol. 2010;26(2):140–5. doi:10.1097/MOG.0b013e328333e94a. PubMed PMID: 19901832.Google Scholar
  49. 49.
    Crookes PF. Surgical treatment of morbid obesity. Annu Rev Med. 2006;57:243–64. doi:10.1146/annurev.med.56.062904.144928. PubMed PMID: 16409148.Google Scholar
  50. 50.
    Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622. doi:10.1210/er.2011-1044. PubMed PMID: 22550271; PubMed Central PMCID: PMCPMC3410227.Google Scholar
  51. 51.
    Michalakis K, le Roux C. Gut hormones and leptin: impact on energy control and changes after bariatric surgery–what the future holds. Obes Surg. 2012;22(10):1648–57. doi:10.1007/s11695-012-0698-9. PubMed PMID: 22692670.Google Scholar
  52. 52.
    Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5. doi:10.1002/bjs.5227. PubMed PMID: 16392104.Google Scholar
  53. 53.
    Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol. 2014. doi:10.1152/ajpregu.00491.2013. PubMed PMID: 24430883.Google Scholar
  54. 54.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4. doi:10.1038/nature02666. PubMed PMID: 12167864.Google Scholar
  55. 55.
    Evans S, Pamuklar Z, Rosko J, Mahaney P, Jiang N, Park C, et al. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction. Surg Endosc. 2012;26(4):1086–94. doi:10.1007/s00464-011-2004–7. PubMed PMID: 22044971; PubMed Central PMCID: PMCPMC3302936.Google Scholar
  56. 56.
    Valderas JP, Irribarra V, Boza C, de la Cruz R, Liberona Y, Acosta AM, et al. Medical and surgical treatments for obesity have opposite effects on peptide YY and appetite: a prospective study controlled for weight loss. J Clin Endocrinol Metab. 2010;95(3):1069–75. doi:jc.2009-0983 [pii]10.1210/jc.2009-0983. PubMed PMID: 20097707.Google Scholar
  57. 57.
    Ionut V, Burch M, Youdim A, Bergman RN. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103. doi: 10.1002/oby.20364. PubMed PMID: 23512841.Google Scholar
  58. 58.
    NIDDK. Prescriptions medications for the tretament of obesity 2013. http://win.niddk.nih.gov/publications/prescription.htm. Accessed: 2 Feb 2014.
  59. 59.
    Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2013. doi:10.1161/01.cir.0000437739.71477.ee. PubMed PMID: 24222017.Google Scholar
  60. 60.
    Igel LI, Powell AG, Apovian CM, Aronne LJ. Advances in medical therapy for weight loss and the weight-centric management of type 2 diabetes mellitus. Curr Atheroscler Rep. 2012;14(1):60–9. doi:10.1007/s11883-011-0221-0. PubMed PMID: 22113707.Google Scholar
  61. 61.
    Aronne LJ, Powell AG, Apovian CM. Emerging pharmacotherapy for obesity. Expert Opin Emerg Drugs. 2011;16(3):587–96. doi:10.1517/14728214.2011.609168. PubMed PMID: 21834735.Google Scholar
  62. 62.
    Perri MG. Effects of behavioral treatment on long-term weight loss: Lessons learned from the look AHEAD trial. Obesity (Silver Spring). 2014;22(1):3–4. doi:10.1002/oby.20672. PubMed PMID: 24415676.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Diabetes and Obesity Research InstituteCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations