Optimization and Scaling of Micro-relays for Ultralow-Power Digital Logic

  • Hei Kam
  • Fred Chen
Part of the Microsystems and Nanosystems book series (MICRONANO, volume 1)


This chapter begins with general overview of the relay energy-delay optimization, followed by a sensitivity-based energy-delay optimization methodology. We establish simple relay design guidelines and examine the implications of scaling relay devices using the proposed design methodology. We also show that in a manner highly analogous to MOSFET scaling, dimensional scaling can be applied to relays to improve device density, switching delay, and power consumption.


Beam Length Versus Norm Switching Delay Switching Energy Static Noise Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Chen, H. Kam, D. Markovic, T.-J. King Liu, V. Stojanovic, and E. Alon, “Integrated circuit design with NEM relays,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design, 2008, pp. 750–757.Google Scholar
  2. 2.
    E. Elmore, The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19, 55–63 (1948)CrossRefGoogle Scholar
  3. 3.
    D. Markovic, V. Stojanovic, B. Nikolic, M.A. Horowitz, R.W. Brodersen, Methods for true energy-performance optimization. IEEE J. Solid State Circuits 39(8), 1282–1293 (2004)CrossRefGoogle Scholar
  4. 4.
    B. Nikolic, Design in the power-limited scaling regime. IEEE Trans. Elect. Dev. 55(1), 71–83 (2008)CrossRefGoogle Scholar
  5. 5.
    D. Marković. A power/area optimal approach to VLSI signal processing. Ph.D. Thesis, UC Berkeley, May 2006.Google Scholar
  6. 6.
    V. Stojanovic, D. Markovic, B. Nikolic, M.A. Horowitz, R.W. Brodersen. Energy-delay tradeoffs in combinational logic using gate sizing and supply voltage optimization, in Proceedings of the 28th European Solid-State Circuits Conference, ESSCIRC’2002, Sep 2002. pp. 211–214.Google Scholar
  7. 7.
    V. Zyuban, D. Brrok, V. Srinivasan, M. Gschwind, P. Bose, P.N. Strenski, P.G. Emma, Integrated analysis of power and performance for pipelined microprocessor. IEEE Trans. Comput. 53(8), 1004–1016 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Broderson, M. Horowitz, D. Markovic, B. Nikolic, V. Stojanovic. Methods for true power minimization, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2002, pp. 35–42.Google Scholar
  9. 9.
    K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micro- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)CrossRefGoogle Scholar
  10. 10.
    D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)CrossRefGoogle Scholar
  11. 11.
    R. Nathanael, V. Pott, H. Kam, J. Jeon, T.-J. King Liu. 4-terminal relay technology for complementary logic, in IEDM Tech. Dig., Dec. 2009, pp. 223–226.Google Scholar
  12. 12.
    H. Kam, V. Pott, R. Nathanael, J. Jeon, E. Alon, T.-J. King Liu. Design and reliability of a MEM relay technology for zero-standby-power digital logic applications, in IEDM Tech. Dig., Dec. 2009, pp. 809–812.Google Scholar
  13. 13.
    V. Zyuban, P. Strenski. Unified methodology for resolving power-performance tradeoffs at the microarchitectural and circuit levels, in Proc. ISLPED, Aug 2002, pp. 166–171.Google Scholar
  14. 14.
    R. Nathanael, V. Pott, H. Kam, J. Jeon, E. Alon, T.-J.K. Liu, Four-terminal-relay body-biasing schemes for complementary logic circuits. IEEE Elect. Dev. Lett. 31(8), 890–892 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Boyd, S.J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. Opt. Eng. 8(1), 67–127 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    B.H. Calhoun, A. Wang, A. Chandrakasan, Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J. Solid State Circuits 50(9), 1778–1786 (2005)CrossRefGoogle Scholar
  17. 17.
    R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circ. SC-9, 256 (1974)CrossRefGoogle Scholar
  18. 18.
    M.L. Roukes. Nanoelectromechanical systems, in Tech. Digest, 2000 Solid-State Sensor and Actuator Workshop, June 2000, pp. 367–376.Google Scholar
  19. 19.
    B.D. Jensen, K. Huang, L.L.W. Chow, K. Kurabayashi, Adhesion effects on contact opening dynamics in micromachined switches. J. Appl. Phys. 97(10), 103–535 (2005)CrossRefGoogle Scholar
  20. 20.
    R. Holm, E. Holm, Electric contacts; theory and application, 4th edn. (Springer, Berlin, 1967)CrossRefGoogle Scholar
  21. 21.
    G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001)CrossRefGoogle Scholar
  22. 22.
    T.J. Cheng, S.A. Bhave. High-Q, low impedance polysilicon resonators with 10 nm air gaps, in Proc. Int. Conf. Micro Electro Mech. Syst., MEMS, 2010, pp. 695–698.Google Scholar
  23. 23.
    H. Kam, T.-J. King Liu, E. Alon, M. Horowitz. Circuit level requirements for MOSFET replacement devices, in IEDM Tech. Dig., Dec. 2008, pp. 427.Google Scholar
  24. 24.
    S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K.K. Das, W. Haensch, E.J. Nowak, D.M. Sylvester, Ultralow-voltage, minimum-energy CMOS. IBM J. Res. Dev. 50(4/5), 469–490 (2006)CrossRefGoogle Scholar
  25. 25.
    A.P. Chandrakasan, D.C. Daly, D.F. Finchelstein, J. Kwong, Y.K. Ramadass, M.E. Sinangil, V. Sze, N. Verma, Technologies for ultradynamic voltage scaling. Proc. IEEE 98(2), 191–214 (2010)CrossRefGoogle Scholar
  26. 26.
    International Technology Roadmap for Semiconductors (ITRS). (Online).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hei Kam
    • 1
  • Fred Chen
    • 2
  1. 1.Intel CorporationHillsboroUSA
  2. 2.Lion Semiconductor, Inc.BerkeleyUSA

Personalised recommendations