Advertisement

CoolEmAll: Models and Tools for Planning and Operating Energy Efficient Data Centres

  • Micha vor dem Berge
  • Jochen Buchholz
  • Leandro Cupertino
  • Georges Da Costa
  • Andrew Donoghue
  • Georgina Gallizo
  • Mateusz Jarus
  • Lara Lopez
  • Ariel Oleksiak
  • Enric Pages
  • Wojciech Piątek
  • Jean-Marc Pierson
  • Tomasz Piontek
  • Daniel Rathgeb
  • Jaume Salom
  • Laura Sisó
  • Eugen Volk
  • Uwe Wössner
  • Thomas Zilio
Chapter

Abstract

The need to improve how efficiently data centre operate is increasing due to the continued high demand for new data centre capacity combined with other factors such as the increased competition for energy resources. The financial crisis may have dampened data centre demand temporarily, but current projections indicate strong growth ahead. By 2020, it is estimated that annual investment in the construction of new data centres will rise to $ 50bn in the US, and $ 220bn worldwide [23].

Keywords

Computational Fluid Dynamics Data Centre Computational Fluid Dynamics Simulation Power Usage Power Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The results presented in this chapter were funded by the European Commission under contract 288701 through the project CoolEmAll.

References

  1. 1.
    Parallel Workload Archive. (2006). URL http://www.cs.huji.ac.il/labs/parallel/workload/ .
  2. 2.
    Green grid data center power efficiency metrics: PUE and DCIE. Tech. rep., The Green Grid (2008).Google Scholar
  3. 3.
    Productivity indicator. Tech. rep., The Green Grid (2008).Google Scholar
  4. 4.
    Carbon usage effectiveness (cue): A green grid data center sustainability metric. Tech. rep., The Green Grid (2010).Google Scholar
  5. 5.
    ERE: A metric for measuring the benefit of reuse energy from a data center. White paper, The Green Grid (2010).Google Scholar
  6. 6.
    Enhancing the energy efficiency and use of green energy in data centers. Tech. rep., Green IT Promotion Council (2011).Google Scholar
  7. 7.
    Harmonizing global metrics for data center energy efficiency. Global taskforce reaches agreement on measurement protocols for PUE continues discussion of additional energy efficiency metrics. Tech. rep., Global Metrics Harmonization Task Force (2011).Google Scholar
  8. 8.
    New data center energy efficiency evaluation index. dppe (datacenter performance per energy). measurement guidelines (ver 2.05). Tech. rep., Green IT Promotion Council (2011).Google Scholar
  9. 9.
    On-site energy generation efficiency (oge) and energy carbon intensity (eci). Tech. rep., Green IT Promotion Council (2011).Google Scholar
  10. 10.
    Recommendations for measuring and reporting overall data center efficiency. version 2 – measuring PUE for data centers. Tech. rep., Data Center Efficiency Task Force (2011).Google Scholar
  11. 11.
    Water usage effectiveness. Tech. rep., The Green Grid (2011).Google Scholar
  12. 12.
    Global taskforce reaches agreement on measurement protocols for GEC, ERF, and CUE – continues discussion of additional energy efficiency metrics. Tech. rep., Global Metrics Harmonization Task Force (2012).Google Scholar
  13. 13.
    PUE (tm): A comprehensive examination of the metric. confidential report. White paper, The Green Grid (2012).Google Scholar
  14. 14.
    Aumueller, M., Schulze-Doebold, J., Lang, R., Rainer, D., Werner, A., Woessner, U., Wol, P.: COVISE User’s Guide (2013).Google Scholar
  15. 15.
    vor dem Berge, M.: First definition of the flexible rack-level compute box with integrated cooling. Tech report, CoolEmAll (2012).Google Scholar
  16. 16.
    vor dem Berge, M., Christmann, W., Volk, E., Wesner, S., Oleksiak, A., Piontek, T., Costa, G.D., Pierson, J.M.: CoolEmAll - Models and tools for optimization of data center energy-efficiency. In: Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–5 (2012).Google Scholar
  17. 17.
    vor dem Berge, M., Da Costa, G., Jarus, M., Oleksiak, A., Piatek, W., Volk, E.: Modeling Data Center Building Blocks for Energy-efficiency and Thermal Solutions. Springer (2013).Google Scholar
  18. 18.
    Bąk, S., Krystek, M., Kurowski, K., Oleksiak, A., Pik atek, W., Wk aglarz, J.: GSSIM – A tool for distributed computing experiments. Scientific Programming 19(4), 231–251 (2011). DOI 10.3233/SPR-2011-0332.Google Scholar
  19. 19.
    Bolla, R.: STF439 - global KPIs for energy efficiency of deployed broadband. In: ETSI Workshop on Energy Efficiency (2012).Google Scholar
  20. 20.
    Bosque, A., Ibañez, P., Viñals, V., Stenström, P., Llaber\'ıa, J.M.: Characterization of Apache web server with Specweb2005. In: Proceedings of the 2007 workshop on MEmory performance: DEaling with Applications, systems and architecture, MEDEA '07, pp. 65–72. ACM, New York, NY, USA (2007). DOI 10.1145/1327171.1327179. URL http://doi.acm.org/10.1145/1327171.1327179 .
  21. 21.
    CA: Web-page of the ca company (2014). URL www.ca.com .
  22. 22.
    Chetsa, G.L.T., Lefevre, L., Pierson, J.M., Stolf, P., Da Costa, G.: DNA-inspired scheme for building the energy profile of HPC systems. In: International Workshop on Energy-Efficient Data Centres, Springer (2012).Google Scholar
  23. 23.
    Christian, L., Belady, P.: Projecting annual new data center construction market size. Tech. rep., Microsoft Global Foundation Services (2011).Google Scholar
  24. 24.
    Cupertino, L.F., Costa, G., Sayah, A., Pierson, J.M.: Energy consumption library. In: J.M. Pierson, G. Da Costa, L. Dittmann (eds.) Energy Efficiency in Large Scale Distributed Systems, Lecture Notes in Computer Science, pp. 51–57. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-40517-4_4. URL http://dx.doi.org/10.1007/978-3-642-40517-4_4 .
  25. 25.
    Dongarra, J.J., Meuer, H.W., Strohmaier, E., et al.: Top500 supercomputer sites. Supercomputer 67, 89–111 (1997).Google Scholar
  26. 26.
    Donoghue, A.: Market assessment report. Tech report, CoolEmAll (2012).Google Scholar
  27. 27.
    Donoghue, A.: Preliminary exploitation plan. Tech report, CoolEmAll (2012).Google Scholar
  28. 28.
    Eddy, S.R., Wheeler, T.J.: Hmmer user’s guide: Biological sequence analysis using profile hidden markov models (2013). URL http://www.hmmer.org/ .
  29. 29.
    Electric, S.: Web-page of the data center genome project (2014). URL http://datacentergenome.com .
  30. 30.
    Facebook: Web-page of the open compute project (2014). URL http://www.opencompute.org .
  31. 31.
    Facilities, F.: Dc6sigma products of future facilities (2014). URL http://www.futurefacilities.com/ .
  32. 32.
    Facilities, F.: Web-site of future facilities company (2014). URL http://www.futurefacilities.com/ .
  33. 33.
    Georges, D.C., Helmut, H., Karin, H., Jean-Marc, P.: Modeling the Energy Consumption of Distributed Applications. CRC Press (2012).Google Scholar
  34. 34.
    Herrlin, M.: Rack cooling effectiveness in data centers and telecom central offices: The rack cooling index (RCI). In: ASHRAE Transactions [0001-2505], pp. 725–731 (2005).Google Scholar
  35. 35.
    Hoyer, M., vor dem Berge, M., Volk, E., Gallizo, G., Buchholz, J., Fornós, R., L. Sisó, W.P.: First definition of the modular compute box with integrated cooling. Tech report, CoolEmAll (2012).Google Scholar
  36. 36.
    Innovative Research, I.: Tileflow product of innovative research inc. (2014). URL http://inres.com/products/tileflow/overview.html .
  37. 37.
    Iosup, A., Li, H., Dumitrescu, C., Wolters, L., Epema, D.: The Grid Workload Format (2006).Google Scholar
  38. 38.
    Jiang, T., Kipp, A., Cappiello, C., Fugini, M., Gangadharan, G., Ferreira, A.M., Pernici, B., Plebani, P., Salomie, I., Cioara, T., Anghel, I., Christmann, W., Henis, E., Kat, R., Lazzaro, M., Ciuca, A., Hatiegan, D.: Layered green performance indicators definitions. Project deliverable, GAMES project (2010).Google Scholar
  39. 39.
    Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Future Gener. Comput. Syst. 28(2), 478–489 (2012). DOI 10.1016/j.future.2011.05.005. URL http://dx.doi.org/10.1016/j.future.2011.05.005 .
  40. 40.
    Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W.: Energy-aware simulations with GSSIM. In: Energy Efficiency in Large Scale Distributed Systems (EE-LSDS), pp. 55–58 (2010).Google Scholar
  41. 41.
    Kundra, V.: Federal data center consolidation initiative. Memorandum for chief information officers, Office of Management and Budget of the USA, Washington, DC (2010).Google Scholar
  42. 42.
    Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A., Weglarz, J.: DCWoRMS - a tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory (2013). DOI 10.1016/j.simpat.2013.08.007. URL http://dx.doi.org/10.1016/j.simpat.2013.08.007 .
  43. 43.
    Malone, C., Belady, C.: Metrics to characterize data center & IT equipment energy use. In: Proceedings of the Digital Power Forum (2006).Google Scholar
  44. 44.
    Mammela, O., Majanen, M., Basmadjian, R., Meer, H.D., Giesler, A., Homberg, W.: Energy-aware job scheduler for high-performance computing. Computer Science - Research and Development 27(4), 265–275 (2012).Google Scholar
  45. 45.
    Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K.S.: Model-driven coordinated management of data centers. Comput. Networks (2010).Google Scholar
  46. 46.
    Newcombe, L., Limbuwala, Z., Latham, P., Smith, V.: Data center fixed to variable energy ratio metric dc-fver. Tech. rep., BCS The Chartered Institute for IT (2012).Google Scholar
  47. 47.
    Prieto, J.L., Costa, G.D.: Energy and heat-aware classification of application. Tech report, CoolEmAll (2013).Google Scholar
  48. 48.
    Prieto, J.L., Gallizo, G., Oleksiak, A.: Validation scenarios, methodology and metrics. Tech report, CoolEmAll (2012).Google Scholar
  49. 49.
    Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power” struggles: coordinated multi-level power management for the data center. In: Proceedings of the 13th international conference on Architectural support for programming languages and operating systems, ASPLOS XIII, pp. 48–59. ACM, New York, NY, USA (2008). DOI 10.1145/1346281.1346289. URL http://doi.acm.org/10.1145/1346281.1346289 .
  50. 50.
    Rathgeb, D., Volk, E.: First release of the simulation and visualisation toolkit. Tech report, CoolEmAll (2013).Google Scholar
  51. 51.
    Robert, B., Ali, N., Florian, N., de Meer, H., Giuliani, G.: A methodology to predict the power consumption of servers in data centers. Proceedings of the 2nd international conference on energy-efficient computing and networking (2011).Google Scholar
  52. 52.
    Romonet: Romonet products overview (2014). URL http://www.romonet.com/overview .
  53. 53.
    Shah, A., Krishnan, N.: Optimization of global data center thermal management workload for minimal environmental and economic burden. Components and Packaging Technologies, IEEE Transactions on 31(1), 39–45 (2008). DOI 10.1109/TCAPT.2007.906721.Google Scholar
  54. 54.
    Slurm: Slurm workload manager (2013).Google Scholar
  55. 55.
    Stanley, J.R., Brill, K.G., Koomey, J.: Four metrics define data center “greenness”. Tech. rep., Uptime Institute (2007).Google Scholar
  56. 56.
    Stansberry, M.: Data center industry survey results 2011. Tech. rep., Uptime Institute (2011).Google Scholar
  57. 57.
    Torque: Torque resource manager (2013).Google Scholar
  58. 58.
    Tsiombikas, J.: C-Ray simple raytracing tests (2008).Google Scholar
  59. 59.
    Volk, E., Piątek, W., Jarus, M., Costa, G.D., Sisó, L., vor dem Berge, M.: First definition of the hardware and software models. Tech report, CoolEmAll (2012).Google Scholar
  60. 60.
    Volk, E., Rathgeb, D., Oleksiak, A.: Coolemall – optimising cooling efficiency in data centres. Computer Science - Research and Development (2013). DOI 10.1007/s00450-013-0246-4.Google Scholar
  61. 61.
    Witkowski, M., Oleksiak, A., Piontek, T., Weglarz, J.: Practical power consumption estimation for real life hpc applications. Future Generation Computer Systems (2012).Google Scholar
  62. 62.
    Woessner, U., Volk, E., Gallizo, G.: Design of the CoolEmAll simulation and visualisation environment. Tech report, CoolEmAll (2012).Google Scholar
  63. 63.
    Yeo, S., Lee, H.H.: SimWare: A Holistic Warehouse-Scale Computer Simulator. Computer 45(9), 48–55 (2012). DOI 10.1109/MC.2012.251.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Micha vor dem Berge
    • 1
  • Jochen Buchholz
    • 2
  • Leandro Cupertino
    • 3
  • Georges Da Costa
    • 3
  • Andrew Donoghue
    • 4
  • Georgina Gallizo
    • 2
  • Mateusz Jarus
    • 5
  • Lara Lopez
    • 6
  • Ariel Oleksiak
    • 5
  • Enric Pages
    • 6
  • Wojciech Piątek
    • 5
  • Jean-Marc Pierson
    • 3
  • Tomasz Piontek
    • 5
  • Daniel Rathgeb
    • 2
  • Jaume Salom
    • 7
  • Laura Sisó
    • 7
  • Eugen Volk
    • 2
  • Uwe Wössner
    • 2
  • Thomas Zilio
    • 3
  1. 1.christmann informationstechnik + medien GmbH & Co. KGIlsedeGermany
  2. 2.High Performance Computing Center Stuttgart (HLRS)University of StuttgartStuttgartGermany
  3. 3.Institute for Research in Informatics of Toulouse (IRIT)Université Paul SabatierToulouse Cedex 9France
  4. 4.LondonUk
  5. 5.Poznan Supercomputing and Networking Center (PSNC)Applications DepartmentPoznanPoland
  6. 6.Atos Spain, S.A. (ATOS)Albarracín, 25MadridSpain
  7. 7.Catalonia Institute for Energy Research (IREC)BarcelonaSpain

Personalised recommendations