Online Resource Management for Carbon-Neutral Cloud Computing

  • Kishwar Ahmed
  • Shaolei Ren
  • Yuxiong He
  • Athanasios V. Vasilakos


The explosive growth of cloud computing services in recent years has led to significant expansion of data centers around the world and dramatically increased the overall electricity consumption, thereby resulting in a huge carbon footprint and severely impacting environment. As a consequence, data center operators have been increasingly urged to find effective solutions to achieve an overall net zero carbon footprint i.e., carbon neutrality. The state-of-the-art research addresses carbon neutrality based on accurate prediction of long-term future information that is typically unavailable in practice. In this chapter, we propose a provably-efficient online algorithm, called COCA (optimizing for COst minimization and CArbon neutrality), which minimizes the operational cost while satisfying the carbon neutrality without long-term future information a priori and in the presence of time-varying workloads and intermittent renewable energy supplies. We present a trace-based simulation study to validate the effectiveness of COCA, and the results show that COCA can outperform state-of-the-art prediction-based methods in terms of cost saving while achieving carbon neutrality. Moreover, we extend COCA to incorporate geographic load balancing to explore the geo-diversities of data centers for reducing the operational cost.


Data Center Switching Cost Carbon Footprint Electricity Price Online Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Ren and Y. He, “Coca: Online distributed resource management for cost minimization and carbon neutrality in data centers,” in SuperComputing, 2013.Google Scholar
  2. 2.
    A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs “Cutting the electric bill for internet-scale systems,” in SIGCOMM, 2009.Google Scholar
  3. 3.
    “How clean is your cloud?” Greenpeace, April 2012.Google Scholar
  4. 4.
    K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi “Capping the brown energy consumption of internet services at low cost,” in IGCC, 2010.Google Scholar
  5. 5.
    C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam “Carbon-aware energy capacity planning for datacenters,” in MASCOTS, 2012.Google Scholar
  6. 6.
    N. Deng, C. Stewart, D. Gmach, and M. F. Arlitt “Policy and mechanism for carbon-aware cloud applications,” in NOMS, 2012.Google Scholar
  7. 7.
    “How dirty is your data? a look at the energy choices that power cloud computing,” Greenpeace, 2011.Google Scholar
  8. 8.
    A. Qureshi “Power-demand routing in massive geo-distributed systems,” Ph.D. dissertation, MIT, 2010.Google Scholar
  9. 9.
    “Electricity from coal,”
  10. 10.
    “Google. google’s green ppas: What, how, and why.” April 2011.Google Scholar
  11. 11.
    “Microsoft. becoming carbon neutral: How microsoft is striving to become leaner, greener, and more accountable.”Google Scholar
  12. 12.
    Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew “Greening geographical load balancing,” in SIGMETRICS, 2011.Google Scholar
  13. 13.
    N. Buchbinder, N. Jain, and I. Menache “Online job migration for reducing the electricity bill in the cloud,” in IFIP Networking, 2011.Google Scholar
  14. 14.
    Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew “Geographical load balancing with renewables,” SIGMETRICS Perform. Eval. Rev., vol. 39, no. 3, pp. 62–66, Dec. 2011.CrossRefGoogle Scholar
  15. 15.
    M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska “Dynamic right-sizing for powerproportional data centers,” in IEEE Infocom, 2011.Google Scholar
  16. 16.
    “Facebook statement: Facebook and greenpeace collaboration on clean and renewable energy,”
  17. 17.
    Google, “Google’s green ppas: What, how, and why.”Google Scholar
  18. 18.
    Microsoft, “Becoming carbon neutral: How microsoft is striving to become leaner, greener, and more accountable.”Google Scholar
  19. 19.
    H. Lim, A. Kansal, and J. Liu “Power budgeting for virtualized data centers,” in USENIX ATC, 2011.Google Scholar
  20. 20.
    A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy “Optimal power allocation in server farms,” in SIGMETRICS, 2009.Google Scholar
  21. 21.
    D. Meisner, B. T. Gold, and T. F. Wenisch “The powernap server architecture,” ACM Trans. Comput. Syst., vol. 29, no. 1, pp. 3:1–3:24, Feb. 2011.Google Scholar
  22. 22.
    Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam “Managing server energy and operational costs in hosting centers,” SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 303–314, Jun. 2005.CrossRefGoogle Scholar
  23. 23.
    R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely “Dynamic resource allocation and power management in virtualized data centers,” in NOMS, 2010.Google Scholar
  24. 24.
    B. Guenter, N. Jain, and C. Williams “Managing cost, performance and reliability tradeoffs for energy-aware server provisioning,” in IEEE Infocom, 2011.Google Scholar
  25. 25.
    T. Lu, M. chen, and L. Andrew “Simple and effective dynamic provisioning for powerproportional data centers,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1161–1171, 2013.CrossRefGoogle Scholar
  26. 26.
    R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam “Optimal power cost management using stored energy in data centers,” in SIGMETRICS, 2011.Google Scholar
  27. 27.
    D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. K. Fathy “Energy storage in datacenters: What, where and how much?” in SIGMETRICS, 2012.Google Scholar
  28. 28.
    V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. Tullsen, and T. Simunic Rosing “Managing distributed ups energy for effective power capping in data centers,” in ISCA, 2012.Google Scholar
  29. 29.
    Y. Guo and Y. Fang, “Electricity cost saving strategy in data centers by using energy storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1149–1160, 2013.CrossRefGoogle Scholar
  30. 30.
    S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar “Leveraging stored energy for handling power emergencies in aggressively provisioned datacenters,” in ASPLOS, 2012.Google Scholar
  31. 31.
    S. Govindan, A. Sivasubramaniam, and B. Urgaonkar “Benefits and limitations of tapping into stored energy for datacenters,” SIGARCH Comput. Archit. News, vol. 39, no. 3, pp. 341–352, Jun. 2011.CrossRefGoogle Scholar
  32. 32.
    W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu “Multigreen: cost-minimizing multi-source datacenter power supply with online control,” in e-Energy, 2013.Google Scholar
  33. 33.
    J. Tu, L. Lu, M. Chen, and R. K. Sitaraman “Dynamic provisioning in next-generation data centers with on-site power production,” in e-Energy, 2013.Google Scholar
  34. 34.
    M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew “Online algorithms for geographical load balancing,” in IGCC, 2012.Google Scholar
  35. 35.
    N. U. Prabhu, Foundations of Queueing Theory. Kluwer Academic Publishers, 1997.Google Scholar
  36. 36.
    S. Ren, Y. He, and F. Xu “Provably-efficient job scheduling for energy and fairness in geographically distributed data centers,” in ICDCS, 2012.Google Scholar
  37. 37.
    L. Rao, X. Liu, L. Xie, and W. Liu “Reducing electricity cost: Optimization of distributed internet data centers in a multi-electricity-market environment,” in IEEE Infocom, 2010.Google Scholar
  38. 38.
    M. A. Adnan, R. Sugihara, and R. K. Gupta “Energy efficient geographical load balancing via dynamic deferral of workload,” in Cloud, 2012.Google Scholar
  39. 39.
    P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav “It’s not easy being green,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 211–222, Aug. 2012.CrossRefGoogle Scholar
  40. 40.
    I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart, J. Torres, and R. Bianchini “Greenslot: Scheduling energy consumption in green datacenters,” in Super Computing, 2011.Google Scholar
  41. 41.
    A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. E. Culler, and R. H. Katz “Integrating renewable energy using data analytics systems: Challenges and opportunities.” IEEE Data Eng. Bull., vol. 34, no. 1, pp. 3–11, 2011.Google Scholar
  42. 42.
    C. Li, A. Qouneh, and T. Li “iswitch: coordinating and optimizing renewable energy powered server clusters,” SIGARCH Comput. Archit. News, vol. 40, no. 3, Jun. 2012.Google Scholar
  43. 43.
    Y. Zhang, Y. Wang, and X. Wang “Greenware: greening cloud-scale data centers to maximize the use of renewable energy,” in Middleware, 2011.Google Scholar
  44. 44.
    C. Chen, B. He, X. Tang, C. Chen, and Y. Liu “Green databases through integration of renewable energy.” in CIDR, 2013.Google Scholar
  45. 45.
    M. Harchol-Balter “The effect of heavy-tailed job size distributions on computer system design,” in Applications of Heavy Tailed Distributions in Economics, 1999.Google Scholar
  46. 46.
    P. Costello and R. Rathi, “Data center energy efficiency, renewable energy and carbon offset investment best practices,”, January 2012.Google Scholar
  47. 47.
    J. Mogul “Improving energy efficiency for networked applications,” ANCS, 2007.Google Scholar
  48. 48.
  49. 49.
    N. Deng, C. Stewart, D. Gmach, M. Arlitt, and J. Kelley “Adaptive green hosting,” in ICAC, 2012.Google Scholar
  50. 50.
    Y. Zhang, Y. Wang, and X. Wang “Electricity bill capping for cloud-scale data centers that impact the power markets,” in ICPP, 2012.Google Scholar
  51. 51.
    A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch “Autoscale: Dynamic, robust capacity management for multi-tier data centers,” ACM Trans. Comput. Syst., vol. 30, no. 4, pp. 14:1–14:26, Nov. 2012.Google Scholar
  52. 52.
    M. J. Neely, Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan & Claypool, 2010.Google Scholar
  53. 53.
    S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.Google Scholar
  54. 54.
    C. Robert and G. Casella, Monte Carlo Statistical Methods. New York: Springer-Verlag, 2004.CrossRefMATHGoogle Scholar
  55. 55.
    R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron “Powerpack: Energy profiling and analysis of high-performance systems and applications,” IEEE Trans. Parallel and Dist. Systems, vol. 21, no. 5, pp. 658–671, May 2010.CrossRefGoogle Scholar
  56. 56.
    “California ISO,”
  57. 57.
    Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and C. Hyser “Renewable and cooling aware workload management for sustainable data centers,” in SIGMETRICS, 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kishwar Ahmed
    • 1
  • Shaolei Ren
    • 1
  • Yuxiong He
    • 2
  • Athanasios V. Vasilakos
    • 3
  1. 1.Florida International UniversityMiamiUSA
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.National Technical University of AthensAthensGreece

Personalised recommendations