Theory of Locomotion Through Complex Fluids

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Microorganisms such as bacteria often swim in fluid environments that cannot be classified as Newtonian. Many biological fluids contain polymers or other heterogeneities which may yield complex rheology. For a given set of boundary conditions on a moving organism, flows can be substantially different in complex fluids, while non-Newtonian stresses can alter the gait of the microorganisms themselves. Heterogeneities in the fluid may also be characterized by length scales on the order of the organism itself leading to additional dynamic complexity. In this chapter we present a theoretical overview of small-scale locomotion in complex fluids with a focus on recent efforts quantifying the impact of non-Newtonian rheology on swimming microorganisms.

Notes

Acknowledgment

GE gratefully acknowledges funding from the Natural Science and Engineering Research Council of Canada while EL thanks the European Union (through a CIG Grant) for partial support.

References

  1. 1.
    D.F. Katz, R.N. Mills, T.R. Pritchett, J. Reprod. Fertil. 53, 259 (1978)CrossRefGoogle Scholar
  2. 2.
    P.F. Dunn, B.F. Picologlou, Biorheol. 13, 379 (1976)Google Scholar
  3. 3.
    S.S. Suarez, A.A. Pacey, Human Reprod. Update 12, 23 (2006)CrossRefGoogle Scholar
  4. 4.
    S.S. Suarez, D.F. Katz, D.H. Owen, J.B. Andrew, R.L. Powell, Biol. Reprod. 44, 375 (1991)CrossRefGoogle Scholar
  5. 5.
    S.S. Suarez, X.B. Dai, Biol. Reprod. 46, 686 (1992)CrossRefGoogle Scholar
  6. 6.
    J.P. Celli, B.S. Turner, N.H. Afdhal, S. Keates, I. Ghiran, C.P. Kelly, R.H. Ewoldt, G.H. McKinley, P. So, S. Erramilli, R. Bansil, Proc. Natl. Acad. Sci. USA 106, 14321 (2009)CrossRefADSGoogle Scholar
  7. 7.
    E.M. Purcell, Am. J. Phys. 45, 11 (1977)CrossRefADSGoogle Scholar
  8. 8.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    E. Lauga, Europhys. Lett. 86, 64001 (2009)CrossRefADSGoogle Scholar
  10. 10.
    H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996)CrossRefADSGoogle Scholar
  11. 11.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Inc., New Jersey 1965)Google Scholar
  12. 12.
    H. Brenner, Chem. Eng. Sci. 18, 1 (1963)CrossRefGoogle Scholar
  13. 13.
    K. Ishimoto, M. Yamada, SIAM J. Appl. Math. 72, 1686 (2012)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)CrossRefMATHADSGoogle Scholar
  15. 15.
    B. Felderhof, R. Jones, Phys. A 202, 94 (1994)CrossRefGoogle Scholar
  16. 16.
    B. Felderhof, R. Jones, Phys. A 202, 119 (1994)CrossRefGoogle Scholar
  17. 17.
    E. Lauga, Soft Matter 7, 3060 (2011)CrossRefADSGoogle Scholar
  18. 18.
    G.R. Fulford, D.F. Katz, R.L. Powell, Biorheol. 35, 295 (1998)CrossRefGoogle Scholar
  19. 19.
    D.J. Smith, J.R. Blake, E.A. Gaffney, Proc. R. Soc. A. 465, 2417 (2009)CrossRefMATHMathSciNetADSGoogle Scholar
  20. 20.
    H.C. Berg, D.A. Brown, Nature 239, 500 (1972)CrossRefADSGoogle Scholar
  21. 21.
    D.F. James, Annu. Rev. Fluid Mech. 41, 129 (2009)CrossRefADSGoogle Scholar
  22. 22.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Fluid Mechanics, 2nd edn. vol. 1 (Wiley-Interscience, New York, NY, 1987)Google Scholar
  23. 23.
    A.S. Khair, T.M. Squires, Phys. Rev. Lett. 105, 156001 (2010)CrossRefADSGoogle Scholar
  24. 24.
    O.S. Pak, L. Zhu, L. Brandt, E. Lauga, Phys. Fluids 24, 103102 (2012)CrossRefADSGoogle Scholar
  25. 25.
    N.C. Keim, M. Garcia, P.E. Arratia, Phys. Fluids 24, 081703 (2012)CrossRefADSGoogle Scholar
  26. 26.
    T. Normand, E. Lauga, Phys. Rev E 78, 061907 (2008)CrossRefADSGoogle Scholar
  27. 27.
    O.S. Pak, T. Normand, E. Lauga, Phys. Rev. E 81, 036312 (2010)CrossRefADSGoogle Scholar
  28. 28.
    G.I. Taylor, Proc. R. Soc. Lond. A 209, 447 (1951)CrossRefMATHADSGoogle Scholar
  29. 29.
    T.K. Chaudhury, J. Fluid Mech. 95, 189 (1979).CrossRefMATHMathSciNetADSGoogle Scholar
  30. 30.
    L.D. Sturges, J. Non-Newtonian Fluid Mech. 8, 357 (1981)CrossRefMATHGoogle Scholar
  31. 31.
    E. Lauga, Phys. Fluids 19, 083104 (2007)CrossRefADSGoogle Scholar
  32. 32.
    H.C. Fu, T.R. Powers, C.W. Wolgemuth, Phys. Rev. Lett. 99, 258101 (2007)CrossRefADSGoogle Scholar
  33. 33.
    H.C. Fu, C.W. Wolgemuth, T.R. Powers, Phys. Fluids 21, 033102 (2009)CrossRefADSGoogle Scholar
  34. 34.
    G.J. Elfring, E. Lauga, Phys. Fluids 23, 011902 (2011)CrossRefADSGoogle Scholar
  35. 35.
    B. Liu, T.R. Powers, K.S. Breuer, Proc. Natl. Acad. Sci. USA 108, 19516 (2011)CrossRefADSGoogle Scholar
  36. 36.
    S.E. Spagnolie, B. Liu, T.R. Powers, Phys. Rev. Lett. 111, 068101 (2013)CrossRefADSGoogle Scholar
  37. 37.
    J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 038101 (2010). DOI 10.1103/PhysRevLett.104.038101CrossRefADSGoogle Scholar
  38. 38.
    X.N. Shen, P.E. Arratia, Phys. Rev. Lett. 106, 208101 (2011)CrossRefADSGoogle Scholar
  39. 39.
    L. Zhu, M. Do-Quang, E. Lauga, L. Brandt, Phys. Rev. E 83, 011901 (2011)CrossRefADSGoogle Scholar
  40. 40.
    L. Zhu, E. Lauga, L. Brandt, Phys. Fluids 24, 051902 (2012)CrossRefADSGoogle Scholar
  41. 41.
    J.E. Drummond, J. Fluid Mech. 25, 787 (1966)CrossRefADSGoogle Scholar
  42. 42.
    M. Sauzade, G.J. Elfring, E. Lauga, Phys. D 240, 1567 (2011).CrossRefMATHGoogle Scholar
  43. 43.
    C. Bender, S. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, Nweyork, 1978)MATHGoogle Scholar
  44. 44.
    A. Morozov, Swimming of Taylor wavy sheets in viscoelastic fluids. Bull. Am. Phys. Soc. 59, (2014)Google Scholar
  45. 45.
    M. Dasgupta, B. Liu, H.C. Fu, M. Berhanu, K.S. Breuer, T.R. Powers, A. Kudrolli, Phys. Rev. E 87, 013015 (2013)CrossRefADSGoogle Scholar
  46. 46.
    J.R. Vélez-Cordero, E. Lauga, J. Non-Newton. Fluid Mech. 199, 37 (2013).CrossRefGoogle Scholar
  47. 47.
    T.D. Montenegro-Johnson, A.A. Smith, D.J. Smith, D. Loghin, J.R. Blake, Euro. Phys. J. E 35, 1 (2012)CrossRefGoogle Scholar
  48. 48.
    T.D. Montenegro-Johnson, D.J. Smith, D. Loghin, Phys. Fluids 25, 081903 (2013)CrossRefADSGoogle Scholar
  49. 49.
    B. Chan, N.J. Balmforth, A.E. Hosoi, Phys. Fluids 17, 113101 (2005).CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    E. Lauga, A.E. Hosoi, Phys. Fluids 18, 113102 (2006).CrossRefADSGoogle Scholar
  51. 51.
    N.J. Balmforth, D. Coombs, S. Pachmann, Q.J. Mechanics Appl. Math. 63, 267 (2010)MATHGoogle Scholar
  52. 52.
    I.H. RiedelKruse, A. Hilfinger, J. Howard, F. Jülicher, HFSP J. 1, 192 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)CrossRefADSGoogle Scholar
  54. 54.
    M.P. Curtis, E.A. Gaffney, Phys. Rev. E 87, 043006 (2013)CrossRefADSGoogle Scholar
  55. 55.
    J.C. Chrispell, L.J. Fauci, M. Shelley, Phys. Fluids 25 (2013)Google Scholar
  56. 56.
    H.C. Berg, L. Turner, Nature 278, 349 (1979)CrossRefADSGoogle Scholar
  57. 57.
    H.C. Fu, V.B. Shenoy, T.R. Powers, Europhys. Lett. 91, 24002 (2010)CrossRefADSGoogle Scholar
  58. 58.
    H.C. Brinkman, Appl. Sci. Res. 1, 27 (1949)CrossRefMATHGoogle Scholar
  59. 59.
    A.M. Leshansky, Phys. Rev. E 80, 051911 (2009)CrossRefADSGoogle Scholar
  60. 60.
    J. Du, J.P. Keener, R.D. Guy, A.L. Fogelson, Phys. Rev. E 85, 036304 (2012)CrossRefADSGoogle Scholar
  61. 61.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)CrossRefADSGoogle Scholar
  62. 62.
    M. Polin, I. Tuval, K. Drescher, J.P. Gollub, R.E. Goldstein, Science 325, 487 (2009)CrossRefADSGoogle Scholar
  63. 63.
    D.M. Woolley, R.F. Crockett, W.D.I. Groom, S.G. Revell, J. Exp. Biol. 212, 2215 (2009)CrossRefGoogle Scholar
  64. 64.
    G.J. Elfring, E. Lauga, Phys. Rev. Lett. 103, 088101 (2009)CrossRefADSGoogle Scholar
  65. 65.
    G.J. Elfring, E. Lauga, J. Fluid Mech. 674, 163–173 (2011)CrossRefMATHMathSciNetADSGoogle Scholar
  66. 66.
    G.J. Elfring, O.S. Pak, E. Lauga, J. Fluid Mech. 646, 505 (2010)CrossRefMATHMathSciNetADSGoogle Scholar
  67. 67.
    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008)CrossRefADSGoogle Scholar
  68. 68.
    D. Saintillan, M.J. Shelley, Phys. Fluids 20 (2008)Google Scholar
  69. 69.
    C. Hohenegger, M.J. Shelley, Phys. Rev. E 81, 046311 (2010)CrossRefMathSciNetADSGoogle Scholar
  70. 70.
    D. Saintillan, M.J. Shelley, C. R. Physique 14, 497 (2013)CrossRefADSGoogle Scholar
  71. 71.
    Y. Bozorgi, P.T. Underhill, Phys. Rev. E 84, 061901 (2011)CrossRefADSGoogle Scholar
  72. 72.
    Y. Bozorgi, P.T. Underhill, J. Rheol. 57, 511 (2013)CrossRefADSGoogle Scholar
  73. 73.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)CrossRefADSGoogle Scholar
  74. 74.
    A. Einstein, Investigations on the Theory of the Brownian Movement (Courier Dover Publications, Newyork, 1956)MATHGoogle Scholar
  75. 75.
    L.G. Leal, E.J. Hinch, J. Fluid Mech. 55, 745 (1972)CrossRefMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations