Experimental Challenges of Shear Rheology: How to Avoid Bad Data

  • Randy H. Ewoldt
  • Michael T. Johnston
  • Lucas M. Caretta
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

A variety of measurement artifacts can be blamed for misinterpretations of shear thinning, shear thickening, and viscoelastic responses, when the material does not actually have these properties. The softness and activity of biological materials will often magnify the challenges of experimental rheological measurements. The theoretical definitions of rheological material functions are based on stress, strain, and strain-rate components in simple deformation fields. In reality, one typically measures loads and displacements at the boundaries of a sample, and the calculation of true stress and strain may be encumbered by instrument resolution, instrument inertia, sample inertia, boundary effects, and volumetric effects. Here we discuss these common challenges in measuring shear material functions in the context of soft, water-based, and even living biological complex fluids. We discuss techniques for identifying and minimizing experimental errors and for pushing the experimental limits of rotational shear rheometers. Two extreme case studies are used: an ultrasoft aqueous polymer/fiber network (hagfish defense gel) and an actively swimming suspension of microalgae (Dunaliella primolecta).

Notes

Acknowledgements

This work was supported by the National Science Foundation under Grant No. CBET-1342408. RHE and LMC acknowledge helpful discussions regarding careful rheological measurements with Prof. Christopher Macosko and Dr. David Giles at the University of Minnesota. RHE also thanks Prof. Gareth McKinley at the Massachusetts Institute of Technology for initial discussions on drawing experimental boundaries for rheological measurements. RHE and LMC also acknowledge Prof. Jian Sheng at Texas Tech University (formerly University of Minnesota) for suggesting the study of actively swimming microalgae suspensions, and Mr. Anwar Chengala for preparing those samples.

References

  1. 1.
    J.M. Dealy, J. Rheol. 39(1), 253 (1995)CrossRefADSGoogle Scholar
  2. 2.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Volume 1 Fluid Mechanics, 2nd ed. (Wiley, New York, 1987)Google Scholar
  3. 3.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)Google Scholar
  4. 4.
    N. Bharadwaj, J.T. Allison, R.H. Ewoldt, in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Portland, OR, 2013), paper DETC2013–13,462Google Scholar
  5. 5.
    R.H. Ewoldt, T.M. Winegard, D.S. Fudge, Int. J. Non-Linear Mech. 46(4), 627 (2011)CrossRefADSGoogle Scholar
  6. 6.
    R.H. Ewoldt, J. Rheol. 57(1), 177 (2013)CrossRefADSGoogle Scholar
  7. 7.
    K. Walters, Rheometry (Wiley, New York, 1975)Google Scholar
  8. 8.
    C.W. Macosko, Rheology: Principles, Measurements, and Applications (Wiley-VCH, New York, 1994)Google Scholar
  9. 9.
    R.L. Powell, in Rheological Measurement, ed. by A.A. Collyer, D.W. Clegg, 2nd edn., Chap. 9 (Springer, Dordrecht, 1998), pp. 260–298Google Scholar
  10. 10.
    M.S. Oliveira, R. Yeh, G.H. McKinley, J. Non-Newtonian Fluid Mech. 137(1–3), 137 (2006)CrossRefGoogle Scholar
  11. 11.
    L.E. Rodd, T.P. Scott, D.V. Boger, J.J. Cooper-White, G.H. McKinley, J. Non-Newtonian Fluid Mech. 129(1), 1 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Soulages, M. Oliveira, P. Sousa, M. Alves, G. McKinley, J. Non-Newtonian Fluid Mech. 163(1–3), 9 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    M. Johnston, R. Ewoldt, J. Rheol. 57(6), 1515 (2013)CrossRefADSGoogle Scholar
  14. 14.
    D.S. Fudge, T. Winegard, R.H. Ewoldt, D. Beriault, L. Szewciw, G.H. McKinley, Integr. Comp. Biol. 49(1), 32 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Baravian, D. Quemada, Rheol. Acta 37(3), 223 (1998)CrossRefGoogle Scholar
  16. 16.
    C. Baravian, G. Benbelkacem, F. Caton, Rheol. Acta 46(5), 577 (2006)CrossRefGoogle Scholar
  17. 17.
    R.H. Ewoldt, G.H. McKinley, Rheol. Bull. 76(1), 4 (2007)Google Scholar
  18. 18.
    N.Y. Yao, R.J. Larsen, D.A. Weitz, J. Rheol. 52(4), 1013 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Y.C. Lin, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Macromolecules 40(21), 7714 (2007)CrossRefADSGoogle Scholar
  20. 20.
    P. Sharif-Kashani, J.P. Hubschman, D. Sassoon, H.P. Kavehpour, J. Biomech. 44(3), 419 (2011)CrossRefGoogle Scholar
  21. 21.
    C.P. Broedersz, K.E. Kasza, L.M. Jawerth, S. Münster, D.A. Weitz, F.C. MacKintosh, Soft Matter 6(17), 4120 (2010)CrossRefADSGoogle Scholar
  22. 22.
    H. Lee, J.M. Ferrer, F. Nakamura, M.J. Lang, R.D. Kamm, Acta Biomater. 6(4), 1207 (2010)CrossRefGoogle Scholar
  23. 23.
    K.M. Weigandt, D.C. Pozzo, L. Porcar, Soft Matter 5(21), 4321 (2009)CrossRefADSGoogle Scholar
  24. 24.
    S. Suri, C.E. Schmidt, Acta Biomater. 5(7), 2385 (2009)CrossRefGoogle Scholar
  25. 25.
    L.C.E. Struik, Rheol. Acta 6(2), 119 (1967)CrossRefMathSciNetGoogle Scholar
  26. 26.
    M.E. Mackay, C.H. Liang, P.J. Halley, Rheol. Acta 31(5), 481 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Magda, R. Larson, J. Non-Newtonian Fluid Mech. 30(1), 1 (1988)CrossRefADSGoogle Scholar
  28. 28.
    E.S.G. Shaqfeh, Annu. Rev. Fluid Mech. 28, 129 (1996)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    G.H. McKinley, P. Pakdel, A. Öztekin, J. Non-Newtonian Fluid Mech. 67, 19 (1996)CrossRefGoogle Scholar
  30. 30.
    P. Pakdel, G. McKinley, Phys. Rev. Lett. 77(12), 2459 (1996)CrossRefADSGoogle Scholar
  31. 31.
    J.L. Schrag, J. Rheol. 21(3), 399 (1977)CrossRefMATHADSGoogle Scholar
  32. 32.
    J.A. Yosick, J.A. Giacomin, W.E. Stewart, F. Ding, Rheol. Acta 37(4), 365 (1998)CrossRefGoogle Scholar
  33. 33.
    C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, P.A. Janmey, Nature 435(7039), 191 (2005)CrossRefADSGoogle Scholar
  34. 34.
    G.I. Taylor, Philos. Trans. R. Soc. Lond. A. Math. Phys. Character 223(605–615), 289 (1923)CrossRefMATHADSGoogle Scholar
  35. 35.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981)Google Scholar
  36. 36.
    R.G. Larson, Rheol. Acta 31(3), 213 (1992)CrossRefGoogle Scholar
  37. 37.
    ISO, 3219, Determination of viscosity using a rotational viscometer with defined shear rate (1993)Google Scholar
  38. 38.
    H.P. Sdougos, S.R. Bussolari, C.F. Dewey, J. Fluid Mech. 138, 379 (1984)CrossRefADSGoogle Scholar
  39. 39.
    R.M. Turian, Ind. Eng. Chem. Fund. 11(3), 361 (1972)CrossRefGoogle Scholar
  40. 40.
    B. Meulenbroek, C. Storm, A.N. Morozov, W. van Saarloos, J. Non-Newtonian Fluid Mech. 116(2–3), 235 (2004)CrossRefMATHGoogle Scholar
  41. 41.
    L. Pan, A. Morozov, C. Wagner, P.E. Arratia, Phys. Rev. Lett. 110(17), 174502 (2013)CrossRefADSGoogle Scholar
  42. 42.
    D.F. Griffiths, K. Walters, J. Fluid Mech. 42(02), 379 (1970)CrossRefADSGoogle Scholar
  43. 43.
    R.W.G. Shipman, M.M. Denn, R. Keunings, Ind. Eng. Chem. Res. 30(5), 918 (1991)CrossRefGoogle Scholar
  44. 44.
    F.M. Orr, L.E. Scriven, A.P. Rivas, J. Fluid Mech. 67(04), 723 (1975)CrossRefMATHADSGoogle Scholar
  45. 45.
    M.A. Fortes, J. Colloid Interface Sci. 88(2), 338 (1982)CrossRefGoogle Scholar
  46. 46.
    E.J. De Souza, L. Gao, T.J. McCarthy, E. Arzt, A.J. Crosby, Langmuir 24(4), 1391 (2008)CrossRefGoogle Scholar
  47. 47.
    H.M. Laun, J. Meissner, Rheol. Acta 19(1), 60 (1980)CrossRefGoogle Scholar
  48. 48.
    M.E. Mackay, C.A. Cathey, J. Rheol. 35(2), 237 (1991)CrossRefADSGoogle Scholar
  49. 49.
    M.E. Mackay, in Rheological Measurement, ed. by A. Collyer, D. Clegg, 2nd edn., Chap. 20 (Springer, Dordrecht, 1998), pp. 635–665Google Scholar
  50. 50.
    E. Merrill, Physiol. Rev. 49(4), 863 (1969)Google Scholar
  51. 51.
    V. Sharma, A. Jaishankar, Y.C. Wang, G.H. McKinley, Soft Matter 7(11), 5150 (2011)CrossRefADSGoogle Scholar
  52. 52.
    R. Buscall, J.I. McGowan, A.J. Morton-Jones, J. Rheol. 37(4), 621 (1993)CrossRefADSGoogle Scholar
  53. 53.
    H.A. Barnes, J. Non-Newtonian Fluid Mech. 56(3), 221 (1995)CrossRefGoogle Scholar
  54. 54.
    R. Buscall, J. Rheol. 54(6), 1177 (2010)CrossRefADSGoogle Scholar
  55. 55.
    A. Magnin, J. Piau, J. Non-Newtonian Fluid Mech. 36, 85 (1990)CrossRefGoogle Scholar
  56. 56.
    P. Ballesta, G. Petekidis, L. Isa, W.C.K. Poon, R. Besseling, J. Rheol. 56(5), 1005 (2012)CrossRefADSGoogle Scholar
  57. 57.
    A. Yoshimura, R.K. Prudhomme, J. Rheol. 32(1), 53 (1988)CrossRefADSGoogle Scholar
  58. 58.
    C. Clasen, Rheol. Acta 51(10), 883 (2012)CrossRefGoogle Scholar
  59. 59.
    R.H. Ewoldt, C. Clasen, A.E. Hosoi, G.H. McKinley, Soft Matter 3(5), 634 (2007)CrossRefADSGoogle Scholar
  60. 60.
    C.S. Nickerson, J.A. Kornfield, J. Rheol. 49(4), 865 (2005)CrossRefADSGoogle Scholar
  61. 61.
    C.S. Nickerson, J. Park, J.A. Kornfield, H. Karageozian, J. Biomech. 41(9), 1840 (2008)CrossRefGoogle Scholar
  62. 62.
    H.A. Barnes, Q.D. Nguyen, J. Non-Newtonian Fluid Mech. 98(1), 1 (2001)CrossRefMATHGoogle Scholar
  63. 63.
    K. Tan, S. Cheng, L. Jugé, L.E. Bilston, J. Biomech. 46(6), 1060 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Nicolle, J.F. Palierne, J. Mech. Behav. Biomed. Mater. 14(null), 158 (2012)Google Scholar
  65. 65.
    W. Philippoff, C. Han, B. Barnett, M. Dulfano, Biorheology 7(1), 55 (1970)Google Scholar
  66. 66.
    S.J. Haward, V. Sharma, J.A. Odell, Soft Matter 7(21), 9908 (2011)CrossRefADSGoogle Scholar
  67. 67.
    C. Clasen, G.H. McKinley, J. Non-Newtonian Fluid Mech. 124(1–3), 1 (2004)CrossRefMATHGoogle Scholar
  68. 68.
    C. Clasen, B.P. Gearing, G.H. McKinley, J. Rheol. 50(6), 883 (2006)CrossRefADSGoogle Scholar
  69. 69.
    N. Kojić, J. Bico, C. Clasen, G.H. McKinley, J. Exp. Biol. 209(Pt 21), 4355 (2006)Google Scholar
  70. 70.
    P. Erni, M. Varagnat, C. Clasen, J. Crest, G.H. McKinley, Soft Matter 7(22), 10889 (2011)CrossRefADSGoogle Scholar
  71. 71.
    A. Tokarev, B. Kaufman, Y. Gu, T. Andrukh, P.H. Adler, K.G. Kornev, Appl. Phys. Lett. 102(3), 033701 (2013)CrossRefADSGoogle Scholar
  72. 72.
    R. Få hræus, T. Lindqvist, Am. J. Physiol. 96(3), 562 (1931)Google Scholar
  73. 73.
    R.W. Connelly, J. Greener, J. Rheol. 29(2), 209 (1985)CrossRefADSGoogle Scholar
  74. 74.
    E. Andablo-Reyes, R. Hidalgo-Álvarez, J. de Vicente, J. Non-Newtonian Fluid Mech. 165(19–20), 1419 (2010)CrossRefMATHGoogle Scholar
  75. 75.
    G.A. Davies, J.R. Stokes, J. Rheol. 49(4), 919 (2005)CrossRefADSGoogle Scholar
  76. 76.
    C.J. Pipe, T.S. Majmudar, G.H. McKinley, Rheol. Acta 47(5–6), 621 (2008)CrossRefGoogle Scholar
  77. 77.
    R.I. Tanner, M. Keentok, J. Rheol. 27(1), 47 (1983)CrossRefADSGoogle Scholar
  78. 78.
    M. Keentok, S.C. Xue, Rheol. Acta 38(4), 321 (1999)CrossRefGoogle Scholar
  79. 79.
    J.S. Vrentas, D.C. Venerus, C.M. Vrentas, J. Non-Newtonian Fluid Mech. 40(1), 1 (1991)CrossRefMATHGoogle Scholar
  80. 80.
    T. Schweizer, J. Rheol. 47(4), 1071 (2003)CrossRefADSGoogle Scholar
  81. 81.
    S.Q. Wang, S. Ravindranath, P.E. Boukany, Macromolecules 44(2), 183 (2011)CrossRefADSGoogle Scholar
  82. 82.
    F. Snijkers, D. Vlassopoulos, J. Rheol. 55(6), 1167 (2011)CrossRefADSGoogle Scholar
  83. 83.
    M.E. Mackay, P. Halley, J. Rheol. 35(8), 1609 (1991)CrossRefADSGoogle Scholar
  84. 84.
    C.Y. Liu, M. Yao, R.G. Garritano, A.J. Franck, C. Bailly, Rheol. Acta 50(5–6), 537 (2011)CrossRefGoogle Scholar
  85. 85.
    K. Schröter, S.A. Hutcheson, X. Shi, A. Mandanici, G.B. McKenna, J. Chem. Phys. 125(21), 214507 (2006)CrossRefADSGoogle Scholar
  86. 86.
    T. Schweizer, A. Bardow, Rheol. Acta 45(4), 393 (2006)CrossRefGoogle Scholar
  87. 87.
    S.A. Hutcheson, G.B. McKenna, J. Chem. Phys. 129(7), 074502 (2008)CrossRefADSGoogle Scholar
  88. 88.
    C. Dutcher, S. Muller, Phys. Rev. E. 75, 047301 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Randy H. Ewoldt
    • 1
  • Michael T. Johnston
    • 1
  • Lucas M. Caretta
    • 2
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations