Advertisement

The Role of Glutamine Synthetase in the Glutamine Independence in Mammary Tissue

  • Hsiu-Ni KungEmail author
  • Jen-Tsan ChiEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Glutamine addiction of cancer cells is thought to be an attractive way to prevent cancer growth and spreading. Although some regulatory factors of glutamine consumption are known, the actual cell-type specific regulatory mechanism hasn’t been explored yet. In breast tumors, there are two types of tumor cells that may be malignantly transformed from different cellular origins with dramatically different gene expression. We found distinct glutamine requirement in these two types of cells: luminal epithelial cells, as well as their corresponding transformed tumor cells, are more independent to extracellular glutamine than basal cells. This luminal- specific glutamine independent is regulated by its specific expression of glutamine synthetase, which can produce glutamine by combing glutamate and amine group. In response to glutamine deprivation, the expression of glutamine synthetase in luminal cells allow them to produce and export glutamine to the extracellular space to support the survival of glutamine addicted basal cells in a mechanism of metabolic symbiosis. By these observations, the glutamine deprivation therapy should be performed more efficiently with the help of glutamine synthetase inhibition.

Keywords

Glutamine Glutamate Breast cancer Luminal Basal Glutaminase Glutamine synthetase GATA3 

References

  1. 1.
    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.PubMedCrossRefGoogle Scholar
  2. 2.
    The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.Google Scholar
  3. 3.
    Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011;7(8):e1002229.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465(7300):966.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178(1):93–105.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gatza ML, Kung HN, Blackwell KL, Dewhirst MW, Marks JR, Chi JT. Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. Breast Cancer Res. 2011;13(3):R62.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380–4.Google Scholar
  12. 12.
    Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):385–8.Google Scholar
  13. 13.
    Lamonte G, Tang X, Chen JL, et al. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2014;1:23.Google Scholar
  14. 14.
    Wang JB, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18(3):207–19.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Clavell LA, Gelber RD, Cohen HJ, et al. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med. 1986;315(11):657–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell. 2011;19(5):613–28.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Scott L, Lamb J, Smith S, Wheatley DN. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer. 2000;83(6):800–10.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kreis W, Baker A, Ryan V, Bertasso A. Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture. Cancer Res. 1980;40(3):634–41.PubMedGoogle Scholar
  20. 20.
    Ohtawa K, Ueno T, Mitsui K, et al. Apoptosis of leukemia cells induced by valine-deficient medium. Leukemia. 1998;12(10):1651–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Marc Rhoads J, Wu G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. 2009;37(1):111–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Reid MA, Wang WI, Rosales KR, Welliver MX, Pan M, Kong M. The B55alpha subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell. 2013;50(2):200–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Thangavelu K, Pan CQ, Karlberg T, et al. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci U S A. 2012;109(20):7705–10.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984;259(10):6215–21.PubMedGoogle Scholar
  25. 25.
    Sauer LA, Dauchy RT, Nagel WO. Identification of an NAD(P)+-dependent ‘malic’ enzyme in small-intestinal-mucosal mitochondria. Biochem J. 1979;184(1):185–8.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  27. 27.
    Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Reitman ZJ, Jin G, Karoly ED, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A. 2011;108(8):3270–5.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–70.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 2014 Aug 5;16(4):415.Google Scholar
  33. 33.
    Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19(1):30–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Budczies J, Denkert C, Muller BM, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics. 2012;13:334.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Borgan E, Sitter B, Lingjaerde OC, et al. Merging transcriptomics and metabolomics–advances in breast cancer profiling. BMC Cancer. 2010;10:628.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Brauer HA, Makowski L, Hoadley KA, et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res. 2013;19(3):571–85.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Singh B, Tai K, Madan S, et al. Selection of metastatic breast cancer cells based on adaptability of their metabolic state. PLoS One. 2012;7(5):e36510.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Dang CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle. 2009;8(20):3243–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Nair R, Roden DL, Teo WS, et al. c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene. 2014;33(30):3992–4002.Google Scholar
  40. 40.
    Horiuchi D, Kusdra L, Huskey NE, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Xu J, Chen Y, Olopade OI. MYC and breast cancer. Genes Cancer. 2010;1(6):629–40.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Chandriani S, Frengen E, Cowling VH, et al. A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One. 2009;4(8):e6693.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chen Y, Olopade OI. MYC in breast tumor progression. Expert Rev Anticancer Ther. 2008;8(10):1689–98.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013;24(4):450–65.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 2009;20(9):436–43.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med. 2013;13(4):514–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Kouros-Mehr H, Bechis SK, Slorach EM, et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 2008;13(2):141–52.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Grote D, Boualia SK, Souabni A, et al. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 2008;4(12):e1000316.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Anatomy and Cell Biology, School of MedicineNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Molecular Genetics & Microbiology, Center for Genomics and Computational BiologyDuke Medical CenterDurhamUSA

Personalised recommendations