Advertisement

Techniques of Integration

  • Peter R. Mercer
Chapter
Part of the Undergraduate Texts in Mathematics book series (UTM)

Abstract

By way of the Fundamental Theorem of Calculus (Theorem  10.1), many properties of integrals come from properties of derivatives and vice-versa. For example, the most basic technique of integration is to recognize the integrand as the derivative of some particular function. We saw a few examples of this sort of thing in the previous chapter. Here we focus on arguably the next two most important techniques of integration: u-Substitution which comes from the Chain Rule for derivatives, and Integration by Parts which comes from the Product Rule for derivatives.

References

  1. 1.
    Ailawanda, S., Oltikar, B.C., Spiegel, M.R.: Problem 260. Coll. Math. J. 16, 305–306 (1985)Google Scholar
  2. 2.
    Anderson, N.: Integration of inverse functions. Math. Gaz. 54, 52–53 (1970)CrossRefGoogle Scholar
  3. 3.
    Apostol, T.: Calculus, vol. 1, p. 362. Blaisdell, New York (1961)Google Scholar
  4. 4.
    Arora, A.K., Sudhir, K.G., Rodriguez, D.M.: Special integration techniques for trigonometric integrals. Am. Math. Mon. 95, 126–130 (1988)CrossRefGoogle Scholar
  5. 5.
    Beetham, R.: An integral. Math. Gaz. 47, 60 (1963)CrossRefGoogle Scholar
  6. 6.
    Boas, R.P., Jr., Marcus, M.B.: Inverse functions and integration by parts. Am. Math. Mon. 81, 760–761 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borman, J.L.: A remark on integration by parts. Am. Math. Mon. 51, 32–33 (1944)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bracken, P., Seiffert, H.J.: Problem 11133. Am. Math. Mon. 114, 360–361 (2007)Google Scholar
  9. 9.
    Bressoud, D.M.: Second Year Calculus, from Celestial Mechanics to Special Relativity. Springer, New York (1991)zbMATHGoogle Scholar
  10. 10.
    Burk, F.: Numerical integration via integration by parts. Coll. Math. J. 17, 418–422 (1986)CrossRefGoogle Scholar
  11. 11.
    Burk, F.: \(\uppi /4\) and ln2 recursively. Coll. Math. J. 18, 51 (1987)Google Scholar
  12. 12.
    Carlson, B.C.: The logarithmic mean. Am. Math. Mon. 79, 615–618 (1972)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cioranescu, N.: La généralisation de la première formule de la moyenne. L’Enseignement Mathématique 37, 292–302 (1938)Google Scholar
  14. 14.
    Deveau, M., Hennigar, R.: Quotient rule integration by parts. Coll. Math J. 43, 254–256 (2012)CrossRefGoogle Scholar
  15. 15.
    Díaz-Barrero, J.L., Herman, E.: Problem 11225. Am. Math. Mon. 114, 750 (2007)Google Scholar
  16. 16.
    Fitt, A.D.: What they don’t teach you about integration at school. Math. Gaz. 72, 11–15 (1988)CrossRefGoogle Scholar
  17. 17.
    Frohliger, J., Poss, R.: Just an average integral. Math. Mag. 62, 260–261 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Glasser, M.L.: Problem 580. Coll. Math. J. 28, 235–236 (1997)Google Scholar
  19. 19.
    Hoorfar, A., Qi, F.: A new refinement of Young’s inequality. Math. Inequal. Appl. 11, 689–692 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Howard, J., Schlosser, J.: Problem Q700. Math. Mag. 58, 238, 245 (1985)Google Scholar
  21. 21.
    Jameson, G.J.O., Jameson, T.P.: Some remarkable integrals derived from a simple algebraic identity. Math. Gaz. 97, 205–209 (2013)Google Scholar
  22. 22.
    Kazarinoff, D.K.: A simple derivation of the Leibnitz-Gregory series. Am. Math. Mon. 62, 726–727 (1955)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Landau, M.D., Gillis, J., Shimshoni, M.: Problem E2211. Am. Math. Mon. 77, 1107–1108 (1970)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Laugwitz, D., Rodewald, B.: A simple characterization of the Gamma function. Am. Math. Mon. 94, 534–536 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lupu, C., Lupu, T.: Problem 927 (unpublished solution by Mercer, P.R.) Coll. Math. J. 41, 242 (2010)Google Scholar
  26. 26.
    Luthar, R.S., Lindstom, P.A.: Problem 288. Coll. Math. J. 17, 361–362 (1986)Google Scholar
  27. 27.
    Mazzone, E.F., Piper, B.R.: Animating nested Taylor polynomials to approximate a function. Coll. Math. J. 41, 405–408 (2010)CrossRefGoogle Scholar
  28. 28.
    Mercer, A.McD.: Unpublished solution (by proposer) for Problem E2952. Amer. Math. Mon. 93, 568–569 (1986)Google Scholar
  29. 29.
    Mercer, A.McD.: A new mean value theorem for integrals. Math. Gaz. 97, 510–512 (2013)Google Scholar
  30. 30.
    Mitrinovic, D.S.: Analytic Inequalities, p. 49. Springer, Berlin/New York (1970)Google Scholar
  31. 31.
    Nash, C.: Infinite series by reduction formulae. Math. Gaz. 74, 140–143 (1990)CrossRefGoogle Scholar
  32. 32.
    Nelson, R.B.: Symmetry and integration. Coll. Math. J. 26, 39–41 (1995)CrossRefGoogle Scholar
  33. 33.
    Pecaric, J.E.: Connection between some inequalities of Gauss, Steffensen and Ostrowski. Southeast Asian Bull. Math. 13, 89–91 (1989)zbMATHGoogle Scholar
  34. 34.
    Schnell, S., Mendoza, C.: A formula for integrating inverse functions. Math. Gaz. 84, 103–104 (2000)CrossRefGoogle Scholar
  35. 35.
    Sieffert, H.J., Chico Problem Group. Cal. State – Chico: Problem 291. Coll. Math. J. 17, 444–445 (1986)Google Scholar
  36. 36.
    Smith, C.D.: On the problem of Integration by Parts. Math. News Lett. 3, 7–8 (1928)CrossRefGoogle Scholar
  37. 37.
    Switkes, J.: A quotient rule integration by parts formula. Coll. Math. J. 36, 58–60 (2005)CrossRefGoogle Scholar
  38. 38.
    Thong, D.V.: Problem 11581 (unpublished solution by Mercer, P.R.). Am. Math. Mon. 118, 557 (2011)Google Scholar
  39. 39.
    Underhill, W.V.: Finding bounds for definite integrals. Coll. Math. J. 15, 426–429 (1984)CrossRefGoogle Scholar
  40. 40.
    Watson, H.: A fallacy by parts. Math. Gaz. 69, 122 (1985)CrossRefGoogle Scholar
  41. 41.
    Witkowski, A.: On Young’s inequality. J. Inequal. Pure Appl. Math. 7, 164 (2006)MathSciNetGoogle Scholar
  42. 42.
    Zheng, L.: An elementary proof for two basic alternating series. Am. Math. Mon. 109, 187–188 (2002)CrossRefzbMATHGoogle Scholar
  43. 43.
    Zhu, L.: On Young’s inequality. Int. J. Math. Educ. Sci. Technol. 35, 601–603 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Peter R. Mercer
    • 1
  1. 1.Mathematics DepartmentSUNY Buffalo StateBuffaloUSA

Personalised recommendations