Supporting a Social Media Observatory with Customizable Index Structures: Architecture and Performance

  • Xiaoming Gao
  • Evan Roth
  • Karissa McKelvey
  • Clayton Davis
  • Andrew Younge
  • Emilio Ferrara
  • Filippo Menczer
  • Judy Qiu
Chapter

Abstract

The intensive research activity in analysis of social media and micro-blogging data in recent years suggests the necessity and great potential of platforms that can efficiently store, query, analyze, and visualize social media data. To support these “social media observatories” effectively, a storage platform must satisfy special requirements for loading and storage of multi-terabyte datasets, as well as efficient evaluation of queries involving analysis of the text of millions of social updates. Traditional inverted indexing techniques do not meet such requirements. As a solution, we propose a general indexing framework, IndexedHBase, to build specially customized index structures for facilitating efficient queries on an HBase distributed data storage system. IndexedHBase is used to support a social media observatory that collects and analyzes data obtained through the Twitter streaming API. We develop a parallel query evaluation strategy that can explore the customized index structures efficiently, and test it on a set of typical social media data queries. We evaluate the performance of IndexedHBase on FutureGrid and compare it with Riak, a widely adopted commercial NoSQL database system. The results show that IndexedHBase provides a data loading speed that is six times faster than Riak and is significantly more efficient in evaluating queries involving large result sets.

References

  1. 1.
    Alonso, O., Strötgen, J., Baeza-Yates, R. A., Gertz. M. Temporal Information Retrieval: Challenges and Opportunities. In: Proc. 1st Temporal Web Analytics Workshop (TWAW 2011)Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Apache Zookeeper. http://zookeeper.apache.org/
  6. 6.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A., Gruber, R. Bigtable: A Distributed Storage System for Structured Data. In: Proc. 7th Symp. Operating System Design and Implementation (OSDI 2006)Google Scholar
  7. 7.
    Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Flammini, A., Menczer, F. Political Polarization on Twitter. In: Proc. 5th Intl. AAAI Conf. Weblogs and Social Media (ICWSM 2011)Google Scholar
  8. 8.
    Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A., Menczer, Filippo. Predicting the Political Alignment of Twitter Users. In: Proc. IEEE 3rd Intl. Conf. Social Computing (SocialCom 2011)Google Scholar
  9. 9.
    Conover, M., Gonçalves, B., Flammini, A., Menczer, F. Partisan Asymmetries in Online Political Activity. EPJ Data Science, 1:6 (2012)CrossRefGoogle Scholar
  10. 10.
    Conover, M., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A. The Geospatial Characteristics of a Social Movement Communication Network. PLoS ONE, 8(3): e55957 (2013)CrossRefGoogle Scholar
  11. 11.
    Conover, M., Ferrara, E., Menczer, F., Flammini, A. The Digital Evolution of Occupy Wall Street. PloS ONE, 8(5), e64679 (2013)CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Derczynski, L., Yang, B., Jensen, C. Towards Context-Aware Search and Analysis on Social Media Data. In: Proc. 16th Intl. Conf. Extending Database Technology (EDBT 2013)Google Scholar
  15. 15.
    DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F. More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior. Available at SSRN: http://dx.doi.org/10.2139/ssrn.2235423 (2013)
  16. 16.
    Graefe, G. Query Evaluation Techniques for Large Databases. ACM Computing Surveys (CSUR), 25(2): 73–169 (1993)CrossRefGoogle Scholar
  17. 17.
    Hall, A., Bachmann, O., Büssow, R., Gǎnceanu, S., Nunkesser, M. Processing a Trillion Cells per Mouse Click. In: Proc. 38th Intl. Conf. Very Large Data Bases (VLDB 2012)Google Scholar
  18. 18.
    McKelvey, K., Menczer, F. Design and Prototyping of a Social Media Observatory. In: Proc. 22nd Intl. Conf. World Wide Web Companion (WWW 2013)Google Scholar
  19. 19.
    Melnik, S., Gubarev, A., Long, J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T. Dremel: Interactive Analysis of Web-Scale Datasets. In: Proc. 36th Intl. Conf. Very Large Data Bases (VLDB 2010)Google Scholar
  20. 20.
    Padmanabhan, A., Wang, S., Cao, G., Hwang, M., Zhao, Y., Zhang, Z., Gao, Y. FluMapper: An Interactive CyberGIS Environment for Massive Location-based Social Media Data Analysis. In: Proc. Extreme Science and Engineering Discovery Environment: Gateway to Discovery (XSEDE 2013)Google Scholar
  21. 21.
    Peng, D., Dabek, F. Large-scale Incremental Processing Using Distributed Transactions and Notifications. In: Proc. 9th USENIX Symp. Operating Systems Design and Implementation (USENIX 2010)Google Scholar
  22. 22.
  23. 23.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F. Detecting and Tracking Political Abuse in Social Media. In: Proc. 5th Intl. AAAI Conf. Weblogs and Social Media (ICWSM 2011)Google Scholar
  24. 24.
    Ratkiewicz, J. Conover, M., Meiss, M., Goncalves, B., Patil, S., Flammini, A., Menczer, F. Truthy: Mapping the Spread of Astroturf in Microblog Streams. In: Proc. 20th Intl. Conf. World Wide Web Companion (WWW 2011)Google Scholar
  25. 25.
  26. 26.
  27. 27.
    Shvachko, K., Kuang, H., Radia, S. and Chansler, R. The Hadoop Distributed File System. In: Proc. 26th IEEE Symp. Mass Storage Systems and Technologies (MSST 2010)Google Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
    Von Laszewski, G., Fox, G., Wang, F., Younge, A., Kulshrestha, A., Pike, G. Design of the FutureGrid Experiment Management Framework. In: Proc. Gateway Computing Environments Workshop (GCE 2010)Google Scholar
  33. 33.
    Weikum, G., Ntarmos, N., Spaniol, M., Triantafillou, P., Benczúr, A., Kirkpatrick, S., Rigaux, P., Williamson, M. Longitudinal Analytics on Web Archive Data: It’s About Time! In: Proc. 5th Biennial Conf. Innovative Data Systems Research (CIDR 2011)Google Scholar
  34. 34.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F. Competition among Memes in a World with Limited Attention. Nature Sci. Rep., (2) 335 (2012).Google Scholar
  35. 35.
    Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, S., Menczer, F., Flammini, F. The Role of Information Diffusion in the Evolution of Social Networks. In: Proc. 19th ACM Conf. Knowledge Discovery and Data Mining (SIGKDD 2013)Google Scholar
  36. 36.
    Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I. Discretized Streams: an Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters. In: Proc. 4th USENIX Conf. Hot Topics in Cloud Computing (HotCloud 2012)Google Scholar
  37. 37.
    Zobel, J. Moffat, A. Inverted files for text search engines. ACM Computing Surveys, 38(2) - 6 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaoming Gao
    • 1
  • Evan Roth
    • 2
  • Karissa McKelvey
    • 3
  • Clayton Davis
    • 3
  • Andrew Younge
    • 1
  • Emilio Ferrara
    • 3
  • Filippo Menczer
    • 3
  • Judy Qiu
    • 1
  1. 1.School of Informatics and ComputingIndiana UniversityBloomingtonUSA
  2. 2.Department of Computer Science & Information TechnologyUniversity of the District of ColumbiaWashington, DCUSA
  3. 3.School of Informatics and ComputingIndiana UniversityBloomingtonUSA

Personalised recommendations