Skip to main content

Intrathecal Drug Delivery for Control of Pain

  • Chapter
  • First Online:
Treatment of Chronic Pain by Interventional Approaches

Abstract

Over the last two decades, the use of intraspinal drug delivery (ISDD) systems for the treatment of chronic pain and spasticity has increased. The clinical practice varies from institution to institution as far as the utilization of different agents or routes of administration. The clinical approach for intraspinal drug delivery is influenced by the type of pain treated (e.g., chronic nociceptive vs. neuropathic). The choice depends on life expectancy as well as the planned time frame of treatment. Intraspinal catheter placement is frequently chosen for the treatment of cancer pain, spasticity (caused by cerebral palsy, multiple sclerosis, spinal cord injury, and other neurologic conditions), and intractable nonmalignant pain (severe post-laminectomy syndrome and arachnoiditis, vertebral compressive fractures resistant to other therapies, complex regional pain syndrome (CRPS), postherpetic neuralgia, and other types of neuralgias) and the administration of intrathecal chemotherapy and CSF drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paice JA, Penn RD, Shott S. Intraspinal morphine for chronic pain: a retrospective, multicenter study. J Pain Symptom Manage. 1996;11:71–80.

    Article  CAS  PubMed  Google Scholar 

  2. Manchikanti L, Staats PS, Singh V, Schultz DM, Vilims BD, Jasper JF, et al. Evidence-based practice guidelines for interventional techniques in the management of chronic spinal pain. Pain Physician. 2003;6:3–81.

    PubMed  Google Scholar 

  3. Wallace M, Yaksh TL. Long-term spinal analgesic delivery: a review of the preclinical and clinical literature. Reg Anesth Pain Med. 2000;25:117–57.

    Article  CAS  PubMed  Google Scholar 

  4. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179:1011–4.

    Article  CAS  PubMed  Google Scholar 

  5. Prager J, Jacobs M. Evaluation of patients for implantable pain modalities: medical and behavioral assessment. Clin J Pain. 2001;17:206–14.

    Article  CAS  PubMed  Google Scholar 

  6. Coombs DW, Saunders RL, Gaylor MS, Block AR, Colton T, Harbaugh R, et al. Relief of continuous chronic pain by intraspinal narcotics infusion via an implanted reservoir. JAMA. 1983;250:2336–9.

    Article  CAS  PubMed  Google Scholar 

  7. Smith TJ, Staats PS, Deer T, Stearns LJ, Rauck RL, Boortz-Marx RL, et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20:4040–9.

    Article  CAS  PubMed  Google Scholar 

  8. Smith TJ, Coyne PJ. How to use implantable intrathecal drug delivery systems for refractory cancer pain. J Support Oncol. 2003;1:73–6.

    PubMed  Google Scholar 

  9. Cohen SP, Dragovich A. Intrathecal analgesia. Anesthesiol Clin. 2007;25:863–82, viii.

    Article  CAS  PubMed  Google Scholar 

  10. Levy RM, Salzman D. Implanted drug delivery systems for control of chronic pain. In: North RB, Levy RM, editors. Neurosurgical management of pain. New York: Springer; 1997. p. 302–24.

    Chapter  Google Scholar 

  11. Krames ES. Intraspinal opioid therapy for chronic nonmalignant pain: current practice and clinical guidelines. J Pain Symptom Manage. 1996;11:333–52.

    Article  CAS  PubMed  Google Scholar 

  12. Onofrio BM, Yaksh TL. Long-term pain relief produced by intrathecal morphine infusion in 53 patients. J Neurosurg. 1990;72:200–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kapural L, Szabova A, Mekhail NA. Intraspinal drug delivery routes for treatment of chronic pain and spasticity. Semin Pain Med. 2003;1:254–9.

    Article  Google Scholar 

  14. Brown J, Klapow J, Doleys D, Lowery D, Tutak U. Disease-specific and generic health outcomes: a model for the evaluation of long-term intrathecal opioid therapy in noncancer low back pain patients. Clin J Pain. 1999;15:122–31.

    Article  CAS  PubMed  Google Scholar 

  15. Narouze SN, Yonan S, Kapural L, Malak O. Erosion of the inferior epigastric artery: a rare complication of intrathecal drug delivery systems. Pain Med. 2007;8:468–70.

    Article  PubMed  Google Scholar 

  16. Ummenhofer WC, Arends RH, Shen DD, Bernards CM. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology. 2000;92:739–53.

    Article  CAS  PubMed  Google Scholar 

  17. Dobos I, Toth K, Kekesi G, Joo G, Csullog E, Klimscha W, et al. The significance of intrathecal catheter location in rats. Anesth Analg. 2003;96:487–92, table of contents.

    PubMed  Google Scholar 

  18. Prager JP. Neuraxial medication delivery: the development and maturity of a concept for treating chronic pain of spinal origin. Spine (Phila Pa 1976). 2002;27:2593–605; discussion 606.

    Article  Google Scholar 

  19. Samuelsson H, Nordberg G, Hedner T, Lindqvist J. CSF and plasma morphine concentrations in cancer patients during chronic epidural morphine therapy and its relation to pain relief. Pain. 1987;30:303–10.

    Article  CAS  PubMed  Google Scholar 

  20. Gourlay GK, Plummer JL, Cherry DA, Onley MM, Parish KA, Wood MM, et al. Comparison of intermittent bolus with continuous infusion of epidural morphine in the treatment of severe cancer pain. Pain. 1991;47:135–40.

    Article  CAS  PubMed  Google Scholar 

  21. Rawal N. Epidural and spinal agents for postoperative analgesia. Surg Clin North Am. 1999;79:313–44.

    Article  CAS  PubMed  Google Scholar 

  22. Flack SH, Bernards CM. Cerebrospinal fluid and spinal cord distribution of hyperbaric bupivacaine and baclofen during slow intrathecal infusion in pigs. Anesthesiology. 2010;112:165–73.

    Article  CAS  PubMed  Google Scholar 

  23. Flack SH, Anderson CM, Bernards C. Morphine distribution in the spinal cord after chronic infusion in pigs. Anesth Analg. 2011;112:460–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bernards CM. Cerebrospinal fluid and spinal cord distribution of baclofen and bupivacaine during slow intrathecal infusion in pigs. Anesthesiology. 2006;105:169–78.

    Article  PubMed  Google Scholar 

  25. Crul BJ, Delhaas EM. Technical complications during long-term subarachnoid or epidural administration of morphine in terminally ill cancer patients: a review of 140 cases. Reg Anesth. 1991;16:209–13.

    CAS  PubMed  Google Scholar 

  26. Dahm P, Nitescu P, Appelgren L, Curelaru I. Efficacy and technical complications of long-term continuous intraspinal infusions of opioid and/or bupivacaine in refractory nonmalignant pain: a comparison between the epidural and the intrathecal approach with externalized or implanted catheters and infusion pumps. Clin J Pain. 1998;14:4–16.

    Article  CAS  PubMed  Google Scholar 

  27. Gestin Y, Vainio A, Pegurier AM. Long-term intrathecal infusion of morphine in the home care of patients with advanced cancer. Acta Anaesthesiol Scand. 1997;41:12–7.

    Article  CAS  PubMed  Google Scholar 

  28. Yaksh TL, Onofrio BM. Retrospective consideration of the doses of morphine given intrathecally by chronic infusion in 163 patients by 19 physicians. Pain. 1987;31:211–23.

    Article  CAS  PubMed  Google Scholar 

  29. Pan YZ, Li DP, Pan HL. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors. J Neurophysiol. 2002;87:1938–47.

    CAS  PubMed  Google Scholar 

  30. Moises HC, Rusin KI, Macdonald RL. Mu- and kappa-opioid receptors selectively reduce the same transient components of high-threshold calcium current in rat dorsal root ganglion sensory neurons. J Neurosci. 1994;14:5903–16.

    CAS  PubMed  Google Scholar 

  31. Wu ZZ, Chen SR, Pan HL. Differential sensitivity of N- and P/Q-type Ca2+ channel currents to a mu opioid in isolectin B4-positive and -negative dorsal root ganglion neurons. J Pharmacol Exp Ther. 2004;311:939–47.

    Article  CAS  PubMed  Google Scholar 

  32. Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol. 1999;518(Pt 3):803–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kondo I, Marvizon JC, Song B, Salgado F, Codeluppi S, Hua XY, et al. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci. 2005;25:3651–60.

    Article  CAS  PubMed  Google Scholar 

  34. Marker CL, Lujan R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci. 2005;25:3551–9.

    Article  CAS  PubMed  Google Scholar 

  35. Marker CL, Stoffel M, Wickman K. Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci. 2004;24:2806–12.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson VC, Cooke B, Burchiel KJ. Intrathecal hydromorphone for chronic nonmalignant pain: a retrospective study. Pain Med. 2001;2:287–97.

    Article  CAS  PubMed  Google Scholar 

  37. Deer T, Krames ES, Hassenbusch SJ, Burton A, Caraway D, Dupen S, et al. Polyanalgesic consensus conference 2007: recommendations for the management of pain by intrathecal (intraspinal) drug delivery: report of an interdisciplinary expert panel. Neuromodulation. 2007;10:28.

    Google Scholar 

  38. Sosnowski M, Yaksh TL. Differential cross-tolerance between intrathecal morphine and sufentanil in the rat. Anesthesiology. 1990;73:1141–7.

    Article  CAS  PubMed  Google Scholar 

  39. Krames ES, Harb M. Neuromodulation. London: Elsevier; 2009.

    Google Scholar 

  40. Rauck RL, Cherry D, Boyer MF, Kosek P, Dunn J, Alo K. Long-term intrathecal opioid therapy with a patient-activated, implanted delivery system for the treatment of refractory cancer pain. J Pain. 2003;4:441–7.

    Article  CAS  PubMed  Google Scholar 

  41. Hassenbusch SJ, Stanton-Hicks M, Covington EC, Walsh JG, Guthrey DS. Long-term intraspinal infusions of opioids in the treatment of neuropathic pain. J Pain Symptom Manage. 1995;10:527–43.

    Article  CAS  PubMed  Google Scholar 

  42. Tutak U, Doleys DM. Intrathecal infusion systems for treatment of chronic low back and leg pain of noncancer origin. South Med J. 1996;89:295–300.

    Article  CAS  PubMed  Google Scholar 

  43. Angel IF, Gould Jr HJ, Carey ME. Intrathecal morphine pump as a treatment option in chronic pain of nonmalignant origin. Surg Neurol. 1998;49:92–8; discussion 98–9.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson VC, Burchiel KJ. A prospective study of long-term intrathecal morphine in the management of chronic nonmalignant pain. Neurosurgery. 1999;44:289–300; discussion 300–1.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar K, Kelly M, Pirlot T. Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg Neurol. 2001;55:79–86; discussion 86–8.

    Article  CAS  PubMed  Google Scholar 

  46. Shaladi A, Saltari MR, Piva B, Crestani F, Tartari S, Pinato P, et al. Continuous intrathecal morphine infusion in patients with vertebral fractures due to osteoporosis. Clin J Pain. 2007;23:511–7.

    Article  PubMed  Google Scholar 

  47. Duse G, Davia G, White PF. Improvement in psychosocial outcomes in chronic pain patients receiving intrathecal morphine infusions. Anesth Analg. 2009;109:1981–6.

    Article  CAS  PubMed  Google Scholar 

  48. Deer T, Chapple I, Classen A, Javery K, Stoker V, Tonder L, et al. Intrathecal drug delivery for treatment of chronic low back pain: report from the National Outcomes Registry for Low Back Pain. Pain Med. 2004;5:6–13.

    Article  PubMed  Google Scholar 

  49. Thimineur MA, Kravitz E, Vodapally MS. Intrathecal opioid treatment for chronic non-malignant pain: a 3-year prospective study. Pain. 2004;109:242–9.

    Article  CAS  PubMed  Google Scholar 

  50. Reig E, Abejon D, Kranes ES. Neuromodulation. London: Elsevier; 2009.

    Google Scholar 

  51. Deer TR, Caraway DL, Kim CK, Dempsey CD, Stewart CD, McNeil KF. Clinical experience with intrathecal bupivacaine in combination with opioid for the treatment of chronic pain related to failed back surgery syndrome and metastatic cancer pain of the spine. Spine J. 2002;2:274–8.

    Article  PubMed  Google Scholar 

  52. Mironer YE, Haasis JC, Chapple I, Brown C, Satterthwaite JR. Efficacy and safety of intrathecal opioid/bupivacaine mixture in chronic nonmalignant pain: a double blind, randomized, crossover, multicenter study by the National Forum of Independent Pain Clinicians (NFIPC). Neuromodulation. 2002;5:6.

    Article  Google Scholar 

  53. van Dongen RT, Crul BJ, van Egmond J. Intrathecal coadministration of bupivacaine diminishes morphine dose progression during long-term intrathecal infusion in cancer patients. Clin J Pain. 1999;15:166–72.

    Article  PubMed  Google Scholar 

  54. Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, et al. Peptide neurotoxins from fish-hunting cone snails. Science. 1985;230:1338–43.

    Article  CAS  PubMed  Google Scholar 

  55. Miljanich GP, Ramachandran J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol. 1995;35:707–34.

    Article  CAS  PubMed  Google Scholar 

  56. Lawson EF, Wallace MS. Current developments in intraspinal agents for cancer and noncancer pain. Curr Pain Headache Rep. 2010;14:8–16.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA. 2004;291:63–70.

    Article  CAS  PubMed  Google Scholar 

  58. Wallace MS, Rauck R, Fisher R, Charapata SG, Ellis D, Dissanayake S. Intrathecal ziconotide for severe chronic pain: safety and tolerability results of an open-label, long-term trial. Anesth Analg. 2008;106:628–37, table of contents.

    Article  CAS  PubMed  Google Scholar 

  59. Rauck RL, Wallace MS, Leong MS, Minehart M, Webster LR, Charapata SG, et al. A randomized, double-blind, placebo-controlled study of intrathecal ziconotide in adults with severe chronic pain. J Pain Symptom Manage. 2006;31:393–406.

    Article  CAS  PubMed  Google Scholar 

  60. Eisenach JC, DuPen S, Dubois M, Miguel R, Allin D. Epidural clonidine analgesia for intractable cancer pain. The Epidural Clonidine Study Group. Pain. 1995;61:391–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tamsen A, Gordh T. Epidural clonidine produces analgesia. Lancet. 1984;2:231–2.

    Article  CAS  PubMed  Google Scholar 

  62. Hassenbusch SJ, Gunes S, Wachsman S, Willis KD. Intrathecal clonidine in the treatment of intractable pain: a phase I/II study. Pain Med. 2002;3:85–91.

    Article  PubMed  Google Scholar 

  63. Stone LS, Broberger C, Vulchanova L, Wilcox GL, Hokfelt T, Riedl MS, et al. Differential distribution of alpha2A and alpha2C adrenergic receptor immunoreactivity in the rat spinal cord. J Neurosci. 1998;18:5928–37.

    CAS  PubMed  Google Scholar 

  64. Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL. The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci. 1997;17:7157–65.

    CAS  PubMed  Google Scholar 

  65. Sullivan AF, Dashwood MR, Dickenson AH. Alpha 2-adrenoceptor modulation of nociception in rat spinal cord: location, effects and interactions with morphine. Eur J Pharmacol. 1987;138:169–77.

    Article  CAS  PubMed  Google Scholar 

  66. Ono H, Mishima A, Ono S, Fukuda H, Vasko MR. Inhibitory effects of clonidine and tizanidine on release of substance P from slices of rat spinal cord and antagonism by alpha-adrenergic receptor antagonists. Neuropharmacology. 1991;30:585–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74:43–8.

    Article  CAS  PubMed  Google Scholar 

  68. Filos KS, Goudas LC, Patroni O, Polyzou V. Hemodynamic and analgesic profile after intrathecal clonidine in humans. A dose-response study. Anesthesiology. 1994;81:591–601; discussion 27A–8A.

    Article  CAS  PubMed  Google Scholar 

  69. Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J. Epidural clonidine treatment for refractory reflex sympathetic dystrophy. Anesthesiology. 1993;79:1163–9; discussion 27A.

    Article  CAS  PubMed  Google Scholar 

  70. Engle MP, Gassman M, Sykes KT, Bettler B, Hammond DL. Spinal nerve ligation does not alter the expression or function of GABA(B) receptors in spinal cord and dorsal root ganglia of the rat. Neuroscience. 2006;138:1277–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hammond DL, Drower EJ. Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol. 1984;103:121–5.

    Article  CAS  PubMed  Google Scholar 

  72. Dirig DM, Yaksh TL. Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. J Pharmacol Exp Ther. 1995;275:219–27.

    CAS  PubMed  Google Scholar 

  73. Herman RM, D’Luzansky SC, Ippolito R. Intrathecal baclofen suppresses central pain in patients with spinal lesions. A pilot study. Clin J Pain. 1992;8:338–45.

    Article  CAS  PubMed  Google Scholar 

  74. van Hilten BJ, van de Beek WJ, Hoff JI, Voormolen JH, Delhaas EM. Intrathecal baclofen for the treatment of dystonia in patients with reflex sympathetic dystrophy. N Engl J Med. 2000;343:625–30.

    Article  PubMed  Google Scholar 

  75. Lind G, Meyerson BA, Winter J, Linderoth B. Intrathecal baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in neuropathic pain: a pilot study. Eur J Pain. 2004;8:377–83.

    Article  CAS  PubMed  Google Scholar 

  76. Yoon MH, Bae HB, Choi JI, Kim SJ, Chung ST, Kim CM. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology. 2006;78:21–6.

    Article  CAS  PubMed  Google Scholar 

  77. Lee YW, Yaksh TL. Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J Pharmacol Exp Ther. 1996;277:1642–8.

    CAS  PubMed  Google Scholar 

  78. Sawynok J. Adenosine and ATP receptors. Handbook of Experimental Pharmacology. Berlin/Heidelberg: Springer; 2007.

    Google Scholar 

  79. Eisenach JC, Hood DD, Curry R. Phase I safety assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology. 2002;96:24–8.

    Article  CAS  PubMed  Google Scholar 

  80. Eisenach JC, Hood DD, Curry R. Preliminary efficacy assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology. 2002;96:29–34.

    Article  CAS  PubMed  Google Scholar 

  81. Belfrage M, Segerdahl M, Arner S, Sollevi A. The safety and efficacy of intrathecal adenosine in patients with chronic neuropathic pain. Anesth Analg. 1999;89:136–42.

    CAS  PubMed  Google Scholar 

  82. Perret D, Luo ZD. Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics. 2009;6:679–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Takasusuki T, Yaksh TL. The effects of intrathecal and systemic gabapentin on spinal substance P release. Anesth Analg. 2011;112:971–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Takeuchi Y, Takasu K, Honda M, Ono H, Tanabe M. Neurochemical evidence that supraspinally administered gabapentin activates the descending noradrenergic system after peripheral nerve injury. Eur J Pharmacol. 2007;556:69–74.

    Article  CAS  PubMed  Google Scholar 

  85. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, et al. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci. 2001;21:1868–75.

    CAS  PubMed  Google Scholar 

  86. Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, et al. Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther. 2002;303:1199–205.

    Article  CAS  PubMed  Google Scholar 

  87. Arner S, Rawal N, Gustafsson LL. Clinical experience of long-term treatment with epidural and intrathecal opioids – a nationwide survey. Acta Anaesthesiol Scand. 1988;32:253–9.

    Article  CAS  PubMed  Google Scholar 

  88. Nitescu P, Sjoberg M, Appelgren L, Curelaru I. Complications of intrathecal opioids and bupivacaine in the treatment of “refractory” cancer pain. Clin J Pain. 1995;11:45–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Bruel M.D., MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Academy of Pain Medicine

About this chapter

Cite this chapter

Bruel, B.M., Engle, M.P., Rauck, R.L., Weber, T.J., Kapural, L. (2015). Intrathecal Drug Delivery for Control of Pain. In: Deer, T., Leong, M., Buvanendran, A., Kim, P., Panchal, S. (eds) Treatment of Chronic Pain by Interventional Approaches. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1824-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1824-9_42

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1823-2

  • Online ISBN: 978-1-4939-1824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics