A Cellular Automata and a Partial Differential Equation Model of Tumor–Immune Dynamics and Chemotaxis

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 107)

Abstract

Immunotherapy is a newly emerging approach to cancer treatment that seeks to stimulate a body’s immune defenses, especially T cells, to combat and potentially eliminate tumors. Relevant tumor–immune interactions depend on stochasticity, since the dynamics involve a small and decreasing number of cells, and spatiotemporal heterogeneity, since the dynamics occur in a localized tumor environment. To account for these two aspects of the system, we develop mathematical models of an anti-tumor immune response using a cellular automaton and a system of partial differential equations. We explicitly model immune cell recruitment to the tumor via cytokine secretion and chemotaxis of immune cells. Our models exhibit three types of behavior: tumor elimination, oscillation, and uncontrolled tumor growth that depend substantially on the strength of immune cell chemotaxis, or recruitment, to the tumor site.

Notes

Acknowledgements

AKC was supported by the KE Bullen Scholarship III awarded to honours students in the School of Mathematics and Statistics at the University of Sydney, and PSK was supported by the Australian Research Council Discovery Early Career Research Award (DE120101113).

References

  1. 1.
    Aguda, B.D., Marsh, C.B., Thacker, M., Crouser, E.D.: An in silico modeling approach to understanding the dynamics of sarcoidosis. PLoS One 6(5), e19,544 (2011)CrossRefGoogle Scholar
  2. 2.
    Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRefGoogle Scholar
  3. 3.
    Banerjee, S., Sarkar, R.R.: Delay-induced model for tumor-immune interaction and control of malignant tumor growth. BioSystems 91(1), 268–288 (2008)CrossRefGoogle Scholar
  4. 4.
    Barbarossa, M.V., Kuttler, C., Zinsl, J.: Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Math. Biosci. Eng. 9(2), 241–257 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bunimovich-Mendrazitsky, S., Byrne, H., Stone, L.: Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull. Math. Biol. 70(7), 2055–2076 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Buzea, C.G., Agop, M., Moraru, E., Stana, B.A., Gir?u, M., Iancu, D.: Some implications of Scale Relativity theory in avascular stages of growth of solid tumors in the presence of an immune system response. J. Theor. Biol. 282(1), 52–64 (2011)Google Scholar
  7. 7.
    Cabrero, J.R., Serrador, J.M., Barreiro, O., Mittelbrunn, M., Naranjo-Suarez, S., Martin-Cofreces, N., Vicente-Manzanares, M., Mazitschek, R., Bradner, J.E., Avila, J., Valenzuela-Fernandez, A., Sanchez-Madrid, F.: Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol. Biol. Cell 17(8), 3435–3445 (2006)CrossRefGoogle Scholar
  8. 8.
    Castiglione, F., Piccoli, B.: Cancer immunotherapy, mathematical modeling and optimal control. J. Theor. Biol. 247(4), 723–732 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Catron, D.M., Itano, A.A., Pape, K.A., Mueller, D.L., Jenkins, M.K.: Visualizing the first 50 h of the primary immune response to a soluble antigen. Immunity 21(3), 341–347 (2004)CrossRefGoogle Scholar
  10. 10.
    De Boer, R.J., Homann, D., Perelson, A.S.: Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol. 171(8), 3928–3935 (2003)CrossRefGoogle Scholar
  11. 11.
    DeConde, R., Kim, P.S., Levy, D., Lee, P.P.: Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236(1), 39–59 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Depillis, L., Gallegos, A., Radunskaya, A.: A model of dendritic cell therapy for melanoma. Front. Oncol. 3, 56 (2013)CrossRefGoogle Scholar
  13. 13.
    Eftimie, R., Bramson, J.L., Earn, D.J.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73(1), 2–32 (2011)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Eikenberry, S., Thalhauser, C., Kuang, Y.: Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS Comput. Biol. 5, e1000,362 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Erjaee, G.H., Ostadzad, M.H., Amanpour, S., Lankarani, K.B.: Dynamical analysis of the interaction between effector immune and cancer cells and optimal control of chemotherapy. Nonlinear Dyn. Psychol. Life Sci. 17(4), 449–463 (2013)MathSciNetGoogle Scholar
  16. 16.
    Evans, L.C.: Partial Differential Equations, 2ndedn. American Mathematical Society, Providence (2010)Google Scholar
  17. 17.
    Finn, O.J.: Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol. 3, 630–641 (2003)CrossRefGoogle Scholar
  18. 18.
    Friedl, P., Gunzer, M.: Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22(2), 187–191 (2001)CrossRefGoogle Scholar
  19. 19.
    Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A., Wang, J.: Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res. 66(4), 2314–2319 (2006)CrossRefGoogle Scholar
  20. 20.
    Goodhill, G.J.: Diffusion in axon guidance. Eur. J. Neurosci. 9(7), 1414–1421 (1997)CrossRefGoogle Scholar
  21. 21.
    Jaini, R., Kesaraju, P., Johnson, J.M., Altuntas, C.Z., Jane-Wit, D., Tuohy, V.K.: An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat. Med. 16, 799–803 (2010)CrossRefGoogle Scholar
  22. 22.
    Janeway Jr., C.A., Travers, P., Walport, M., Shlomchik, M.J.: Immunobiology: The Immune System in Health and Disease, 6th edn. Garland Science Publishing, New York (2005)Google Scholar
  23. 23.
    Kareva, I., Berezovskaya, F., Castillo-Chavez, C.: Myeloid cells in tumour-immune interactions. J. Biol. Dyn. 4(4), 315–327 (2010)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefMATHGoogle Scholar
  25. 25.
    Kim, P.S., Lee, P.P.: Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput. Biol. 8(10), e1002,742 (2012)CrossRefGoogle Scholar
  26. 26.
    Kim, P.S., Lee, P.P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4(6), e1000,095 (2008)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998)CrossRefMATHGoogle Scholar
  28. 28.
    Kuroishi, T., Tominaga, S., Morimoto, T., Tashiro, H., Itoh, S., Watanabe, H., Fukuda, M., Ota, J., Horino, T., Ishida, T.: Tumor growth rate and prognosis of breast cancer mainly detected by mass screening. Jpn. J. Cancer Res. 81(5), 454–462 (1990)CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)CrossRefMATHGoogle Scholar
  30. 30.
    León, K., Lage, A., Carneiro, J.: How regulatory CD25+CD4+ T cells impinge on tumor immunobiology? on the existence of two alternative dynamical classes of tumors. J. Theor. Biol. 247(1), 122–137 (2007)CrossRefGoogle Scholar
  31. 31.
    León, K., Lage, A., Carneiro, J.: How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: the differential response of tumors to therapies. J. Immunol. 179(9), 5659–5668 (2007)CrossRefGoogle Scholar
  32. 32.
    Lin, A.: A model of tumor and lymphocyte interactions. Discrete and Continuous Dynamical Systems B 4(1), 241–266 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    Mackay, C.R.: Chemokine receptors and T cell chemotaxis. J. Exp. Med. 184(3), 799–802 (1996)CrossRefGoogle Scholar
  34. 34.
    Mallet, D.G., De Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)CrossRefGoogle Scholar
  35. 35.
    Matzavinos, A., Chaplain, M.A.: Travelling-wave analysis of a model of the immune response to cancer. C. R. Biol. 327(11), 995–1008 (2004)CrossRefGoogle Scholar
  36. 36.
    Matzavinos, A., Chaplain, M.A., Kuznetsov, V.A.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)CrossRefMATHGoogle Scholar
  37. 37.
    Maurer, M., von Stebut, E.: Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 36(10), 1882–1886 (2004)CrossRefGoogle Scholar
  38. 38.
    Merrill, S.J.: A model of the role of natural killer cells in immune surveillance I. J. Math. Biol. 12, 363–373 (1981)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Michaelson, J., Satija, S., Moore, R., Weber, G., Halpern, E., Garland, A., Kopans, D.B.: Estimates of breast cancer growth rate and sojourn time from screening database information. J. Women Imaging 5(1), 11–19 (2003)CrossRefGoogle Scholar
  40. 40.
    Moore, H., Li, N.K.: A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 225(4), 513–523 (2004)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Murray, J.D.: Mathematical Biology: I. An Introduction, 3rd edn. Springer, New York (2002)Google Scholar
  42. 42.
    Nestle, F.O., Tonel, G., Farkas, A.: Cancer vaccines: the next generation of tools to monitor the anticancer immune response. PLoS Med. 2, e339 (2005)CrossRefGoogle Scholar
  43. 43.
    Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives, 2rd edn. Springer, New York (2010)Google Scholar
  44. 44.
    Penington, C.J., Hughes, B.D., Landman, K.A.: Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84(4 Pt 1), 041,120 (2011)Google Scholar
  45. 45.
    Pennisi, M.: A mathematical model of immune-system-melanoma competition. Comput. Math. Methods Med. 2012, 850,754 (2012)Google Scholar
  46. 46.
    de Pillis, L.G., Mallet, D.G., Radunskaya, A.E.: Spatial tumor-immune modeling. Comput. Math. Methods Med. 7(2–3), 159–176 (2006)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    de Pillis, L.G., Radunskaya, A.E., Wiseman, C.L.: A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)Google Scholar
  48. 48.
    Qi, A.S., Zheng, X., Du, C.Y., An, B.S.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161(1), 1–12 (1993)CrossRefGoogle Scholar
  49. 49.
    Robert-Tissot, C., Nguyen, L.T., Ohashi, P.S., Speiser, D.E.: Mobilizing and evaluating anticancer T cells: pitfalls and solutions. Expert Rev. Vaccines 12(11), 1325–1340 (2013)CrossRefGoogle Scholar
  50. 50.
    Simpson, M.J., Baker, R.E.: Corrected mean-field models for spatially dependent advection-diffusion-reaction phenomena. Phys. Rev. E 83(5 Pt 1), 051,922 (2011)Google Scholar
  51. 51.
    Simpson, M.J., Landman, K.A., Hughes, B.D.: Multi-species simple exclusion processes. Phys. A 388(4), 399–406 (2009)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Soiffer, R., Hodi, F.S., Haluska, F., Jung, K., Gillessen, S., Singer, S., Tanabe, K., Duda, R., Mentzer, S., Jaklitsch, M., Bueno, R., Clift, S., Hardy, S., Neuberg, D., Mulligan, R., Webb, I., Mihm, M., Dranoff, G.: Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. 21, 3343–3350 (2003)CrossRefGoogle Scholar
  53. 53.
    Soiffer, R., Lynch, T., Mihm, M., Jung, K., Rhuda, C., Schmollinger, J.C., Hodi, F.S., Liebster, L., Lam, P., Mentzer, S., Singer, S., Tanabe, K.K., Cosimi, A.B., Duda, R., Sober, A., Bhan, A., Daley, J., Neuberg, D., Parry, G., Rokovich, J., Richards, L., Drayer, J., Berns, A., Clift, S., Cohen, L.K., Mulligan, R.C., Dranoff, G.: Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13,141–13,146 (1998)Google Scholar
  54. 54.
    Spratt, J.A., von Fournier, D., Spratt, J.S., Weber, E.E.: Decelerating growth and human breast cancer. Cancer 71, 2013–2019 (1993)CrossRefGoogle Scholar
  55. 55.
    Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Wang, W., Epler, J., Salazar, L.G., Riddell, S.R.: Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1. Cancer Res. 66, 6826–6833 (2006)CrossRefGoogle Scholar
  57. 57.
    Wang, Z., Hillen, T.: Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos 17(3), 037,108 (2007)MathSciNetGoogle Scholar
  58. 58.
    Wang, Z.A.: On chemotaxis models with cell population interactions. Math. Model Nat. Phenom. 5(3), 173–190 (2010)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Weedon-Fekjaer, H., Lindqvist, B.H., Vatten, L.J., Aalen, O.O., Tretli, S.: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 10, R41 (2008)CrossRefGoogle Scholar
  60. 60.
    Wiedemann, A., Depoil, D., Faroudi, M., Valitutti, S.: Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc. Natl. Acad. Sci. USA 103, 10,985–10,990 (2006)Google Scholar
  61. 61.
    Wilkinson, P.C., Komai-Koma, M., Newman, I.: Locomotion and chemotaxis of lymphocytes. Autoimmunity 26(1), 55–72 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneyCamperdownAustralia

Personalised recommendations