Advertisement

Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance

  • Hedderik van Rijn
  • Bon-Mi Gu
  • Warren H. MeckEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 829)

Abstract

Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations. Novel implementations of the original SBF model that allow it to be incorporated into ACT-R in a more fundamental fashion than the earlier simulations of Scalar Timing Theory are also considered in conjunction with the proposed properties and neural correlates of the “internal clock”.

Keywords

Interval timing Scalar timing theory Striatal beat-frequency theory Adaptive control of thought-rational cognitive architecture 

References

  1. 1.
    Salvucci DD, Taatgen NA, Kushleyeva Y. Learning when to switch tasks in a dynamic multitasking environment. In: Proceedings of the seventh international conference on cognitive modeling. Trieste: Edizioni Goliardiche; 2006. p. 268–73.Google Scholar
  2. 2.
    Levelt WJM. Speaking: from intention to articulation. Cambridge: MIT Press; 1993.Google Scholar
  3. 3.
    Boisvert MJ, Veal AJ, Sherry DF. Floral reward production is timed by an insect pollinator. Proc Biol Sci. 2007;274(1620):1831–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boisvert MJ, Sherry DF. Interval timing by an invertebrate, the bumble bee Bombus impatiens. Curr Biol. 2006;16(16):1636–40.PubMedGoogle Scholar
  5. 5.
    Henderson J, Hurly TA, Bateson M, Healy SD. Timing in free-living rufous hummingbirds, Selasphorus rufus. Curr Biol. 2006;16(5):512–5.PubMedGoogle Scholar
  6. 6.
    Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behavior. Bioessays. 2000;22(1):94–103.PubMedGoogle Scholar
  7. 7.
    Killeen PR, Fetterman JG. A behavioral theory of timing. Psychol Rev. 1988;95(2):274–95.PubMedGoogle Scholar
  8. 8.
    Fetterman JG, Killeen PR. Categorical scaling of time: implications for clock-counter models. J Exp Psychol Anim Behav Process. 1995;21(1):43–63.PubMedGoogle Scholar
  9. 9.
    Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72(3):561–82.PubMedGoogle Scholar
  11. 11.
    Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.PubMedGoogle Scholar
  12. 12.
    Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.PubMedGoogle Scholar
  13. 13.
    Creelman CD. Human discrimination of auditory duration. J Acoust Soc Am. 1962;34:582–93.Google Scholar
  14. 14.
    Treisman M. Temporal discrimination and the indifference interval. Implications for a model of the “internal clock”. Psychol Monogr. 1963;77(13):1–31.PubMedGoogle Scholar
  15. 15.
    Allan LG, Kristofferson AB. Psychophysical theories of duration discrimination. Atten Percept Psychophys. 1974;16:26–34.Google Scholar
  16. 16.
    Gibbon J, Church RM. Sources of variance in an information processing theory of timing. In: Roitblat HL, Bever TG, Terrace HS, editors. Animal cognition. Hillsdale: Lawrence Erlbaum; 1984. p. 465–88.Google Scholar
  17. 17.
    Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423:52–77.PubMedGoogle Scholar
  18. 18.
    Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84:279–325.Google Scholar
  19. 19.
    Gibbon J. Origins of scalar timing. Learn Motiv. 1991;22:3–38.Google Scholar
  20. 20.
    Church RM. Properties of the internal clock. Ann N Y Acad Sci. 1984;423:566–82.PubMedGoogle Scholar
  21. 21.
    Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the internal clock: first- and second-order principles of subjective time. Annu Rev Psychol. 2014;65:743–71.PubMedGoogle Scholar
  22. 22.
    Gibbon J, Church RM. Representation of time. Cognition. 1990;37(1–2):23–54.PubMedGoogle Scholar
  23. 23.
    Gibbon J, Church RM. Comparison of variance and covariance patterns in parallel and serial theories of timing. J Exp Anal Behav. 1992;57(3):393–406.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Church RM. A concise introduction to scalar timing theory. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 3–22.Google Scholar
  25. 25.
    Wearden JH. Applying the scalar timing model to human time psychology: progress and challenges. In: Helfrich H, editor. Time and mind II: information processing perspectives. Göttingen: Hogrefe & Huber; 2003. p. 21–39.Google Scholar
  26. 26.
    Meck WH. Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process. 1983;9(2):171–201.PubMedGoogle Scholar
  27. 27.
    Meck WH, Church RM, Gibbon J. Temporal integration in duration and number discrimination. J Exp Psychol Anim Behav Process. 1985;11(4):591–7.PubMedGoogle Scholar
  28. 28.
    Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci. 2009;123(5):1102–13.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cheng RK, Meck WH. Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res. 2007;1186:242–54.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Melgire M, Ragot R, Samson S, Penney TB, Meck WH, Pouthas V. Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain Cogn. 2005;58(1):119–24.PubMedGoogle Scholar
  31. 31.
    Sun JZ, Wang GI, Goyal VK, Varshney LR. A framework for Bayesian optimality of psychophysical laws. J Math Psychol. 2012;56(6):495–501.Google Scholar
  32. 32.
    Dehaene S. The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci. 2003;7(4):145–7.PubMedGoogle Scholar
  33. 33.
    Gibbon J, Church RM. Time left: linear versus logarithmic subjective time. J Exp Psychol Anim Behav Process. 1981;7(2):87–107.PubMedGoogle Scholar
  34. 34.
    Wearden JH. Traveling in time: a time-left analogue for humans. J Exp Psychol Anim Behav Process. 2002;28(2):200–8.PubMedGoogle Scholar
  35. 35.
    Dehaene S. Subtracting pigeons: logarithmic or linear? Psychol Sci. 2001;12(3):244–6.PubMedGoogle Scholar
  36. 36.
    Meijering B, Van Rijn H. Experimental and computational analyses of strategy usage in the time-left task. In: Taatgen NA, Van Rijn H, editors. Proceedings of the 31th Annual Meeting of the Cognitive Science Society 2009. p. 1615–20.Google Scholar
  37. 37.
    Cerutti DT, Staddon JE. Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process. 2004;30(1):45–57.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Machado A, Vasconcelos M. Acquisition versus steady state in the time-left experiment. Behav Processes. 2006;71(2–3):172–87.PubMedGoogle Scholar
  39. 39.
    Church RM, Miller KD, Meck WH, Gibbon J. Symmetrical and asymmetrical sources of variance in temporal generalization. Anim Learn Behav. 1991;19(3):207–14.Google Scholar
  40. 40.
    Rakitin BC, Gibbon J, Penney TB, Malapani C, Hinton SC, Meck WH. Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol Anim Behav Process. 1998;24(1):15–33.PubMedGoogle Scholar
  41. 41.
    Meck WH. Choline uptake in the frontal cortex is proportional to the absolute error of a temporal memory translation constant in mature and aged rats. Learn Motiv. 2002;33:88–104.Google Scholar
  42. 42.
    Meck WH, Angell KE. Repeated administration of pyrithiamine leads to a proportional increase in the remembered durations of events. Psychobiology. 1992;20(1):39–46.Google Scholar
  43. 43.
    Meck WH, Church RM, Wenk GL, Olton DS. Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. J Neurosci. 1987;7(11):3505–11.PubMedGoogle Scholar
  44. 44.
    Allman MJ, Meck WH. Pathophysiological distortions in time perception and timed performance. Brain. 2012;135:656–77.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Meck WH. Neuropsychology of timing and time perception. Brain Cogn. 2005;58(1):1–8.PubMedGoogle Scholar
  46. 46.
    Meck WH, Benson AM. Dissecting the brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain Cogn. 2002;48(1):195–211.PubMedGoogle Scholar
  47. 47.
    Balci F, Meck WH, Moore H, Brunner D. Timing deficits in aging and neuropathology. In: Bizon JL, Woods A, editors. Animal models of human cognitive aging. Totowa: Humana Press; 2009. p. 161–201.Google Scholar
  48. 48.
    Lustig C, Meck WH. Paying attention to time as one gets older. Psychol Sci. 2001;12(6):478–84.PubMedGoogle Scholar
  49. 49.
    Lustig C, Meck WH. Modality differences in timing and temporal memory throughout the lifespan. Brain Cogn. 2011;77(2):298–303.PubMedGoogle Scholar
  50. 50.
    Penney TB, Gibbon J, Meck WH. Differential effects of auditory and visual signals on clock speed and temporal memory. J Exp Psychol Hum Percept Perform. 2000;26(6):1770–87.PubMedGoogle Scholar
  51. 51.
    Wearden JH, Lejeune H. Scalar properties in human timing: conformity and violations. Q J Exp Psychol (Hove). 2008;61(4):569–87.Google Scholar
  52. 52.
    Buhusi CV, Meck WH. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci. 2002;116(2):291–7.PubMedGoogle Scholar
  53. 53.
    Cheng RK, Ali YM, Meck WH. Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol Learn Mem. 2007;88(2):149–59.PubMedGoogle Scholar
  54. 54.
    Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Meck WH. Neuropharmacology of timing and time perception. Cogn Brain Res. 1996;3(3–4):227–42.Google Scholar
  56. 56.
    Williamson LL, Cheng RK, Etchegaray M, Meck WH. “Speed” warps time: methamphetamine’s interactive roles in drug abuse, habit formation, and the biological clocks of circadian and interval timing. Curr Drug Abuse Rev. 2008;1(2):203–12.PubMedGoogle Scholar
  57. 57.
    Droit-Volet S, Meck WH. How emotions colour our perception of time. Trends Cogn Sci. 2007;11(12):504–13.PubMedGoogle Scholar
  58. 58.
    Lui MA, Penney TB, Schirmer A. Emotion effects on timing: attention versus pacemaker accounts. PLoS One. 2011;6(7):e21829.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Coull JT. fMRI studies of temporal attention: allocating attention within, or towards, time. Cogn Brain Res. 2004;21(2):216–26.Google Scholar
  60. 60.
    Henry MJ, Herrmann B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2014;2(1):62–86.Google Scholar
  61. 61.
    Nobre K, Coull J. Attention and time. New York: Oxford University Press; 2010.Google Scholar
  62. 62.
    Buhusi CV, Meck WH. Relative time sharing: new findings and an extension of the resource allocation model of temporal processing. Philos Trans R Soc Lond B Biol Sci. 2009;364(1525):1875–85.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wearden JH. “Beyond the fields we know…”: exploring and developing scalar timing theory. Behav Processes. 1999;45(1–3):3–21.PubMedGoogle Scholar
  64. 64.
    Meck WH. Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann N Y Acad Sci. 1984;423:528–41.PubMedGoogle Scholar
  65. 65.
    Penney TB, Allan LG, Meck WH, Gibbon J. Memory mixing in duration bisection. In: Rosenbaum DA, editor. Timing of behavior: neural, psychological, and computational perspectives. Cambridge: MIT Press; 1998. p. 165–93.Google Scholar
  66. 66.
    Allan LG, Gibbon J. Human bisection at the geometric mean. Learn Motiv. 1991;22:39–58.Google Scholar
  67. 67.
    Penney TB, Gibbon J, Meck WH. Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychol Sci. 2008;19(11):1103–9.PubMedGoogle Scholar
  68. 68.
    Allan LG, Gerhardt K. Temporal bisection with trial referents. Percept Psychophys. 2001;63(3):524–40.PubMedGoogle Scholar
  69. 69.
    Ng KK, Tobin S, Penney TB. Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front Integr Neurosci. 2011;5:77.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Macar F, Vidal F. The CNV peak: an index of decision making and temporal memory. Psychophysiology. 2003;40(6):950–4.PubMedGoogle Scholar
  71. 71.
    Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–52.PubMedGoogle Scholar
  72. 72.
    Roberts S, Pashler H. How persuasive is a good fit? A comment on theory testing. Psychol Rev. 2000;107(2):358–67.PubMedGoogle Scholar
  73. 73.
    Kononowicz TW, Van Rijn H. Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci. 2011;5:48.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci. 2011;5:91.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Taatgen NA, Van Rijn H, Anderson J. An integrated theory of prospective time interval estimation: the role of cognition, attention, and learning. Psychol Rev. 2007;114(3):577–98.PubMedGoogle Scholar
  76. 76.
    Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res. 2004;21(2):139–70.Google Scholar
  77. 77.
    Van Rijn H, Anderson JR. Modeling lexical decision as ordinary retrieval. In: Detje F, Doerner D, Schaub H, editors. Proceedings of the 5th international conference on cognitive modeling. Bamberg: Universitaetsverlag Bamberg; 2003. p. 55.Google Scholar
  78. 78.
    Anderson JR. How can the human mind occur in the physical universe? New York: Oxford University Press; 2007.Google Scholar
  79. 79.
    Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y. An integrated theory of the mind. Psychol Rev. 2004;111(4):1036–60.PubMedGoogle Scholar
  80. 80.
    Jones L, Wearden JH. Double standards: memory loading in temporal reference memory. Q J Exp Psychol B. 2004;57(1):55–77.PubMedGoogle Scholar
  81. 81.
    Jones LA, Wearden JH. More is not necessarily better: examining the nature of the temporal reference memory component in timing. Q J Exp Psychol B. 2003;56(4):321–43.PubMedGoogle Scholar
  82. 82.
    Gibbon J, Malapani C, Dale CL, Gallistel C. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7(2):170–84.PubMedGoogle Scholar
  83. 83.
    Van Rijn H, Taatgen NA. Timing of multiple overlapping intervals: how many clocks do we have? Acta Psychol (Amst). 2008;129(3):365–75.Google Scholar
  84. 84.
    Buhusi CV, Oprisan SA. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons. Behav Processes. 2013;95:60–70.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Oprisan SA, Buhusi CV. Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Front Integr Neurosci. 2011;5:52.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Oprisan SA, Buhusi CV. What is all the noise about in interval timing? Philos Trans R Soc Lond B Biol Sci. 2014;369:20120459.Google Scholar
  87. 87.
    Anderson JR, Bothell D, Lebiere C, Matessa M. An integrated theory of list memory. J Mem Lang. 1998;38(4):341–80.Google Scholar
  88. 88.
    Van Maanen L, Van Rijn H, Taatgen N. RACE/A: an architectural account of the interactions between learning, task control, and retrieval dynamics. Cogn Sci. 2012;36(1):62–101.PubMedGoogle Scholar
  89. 89.
    Gonzalez C, Lerch JF, Lebiere C. Instance-based learning in dynamic decision making. Cogn Sci. 2003;27:591–635.Google Scholar
  90. 90.
    Van Maanen L, Van Rijn H. The locus of the Gratton effect in picture–word interference. Top Cogn Sci. 2010;2(1):168–80.PubMedGoogle Scholar
  91. 91.
    Meck WH, Church RM, Olton DS. Hippocampus, time, and memory. Behav Neurosci. 1984;98(1):3–22.PubMedGoogle Scholar
  92. 92.
    Olton DS, Wenk GL, Church RM, Meck WH. Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia. 1988;26(2):307–18.PubMedGoogle Scholar
  93. 93.
    Meck WH, Church RM, Matell MS. Hippocampus, time, and memory – A retrospective analysis. Behav Neurosci. 2013;127(5):642–54.PubMedGoogle Scholar
  94. 94.
    Borst JP, Taatgen NA, Stocco A, van Rijn H. The neural correlates of problem states: testing FMRI predictions of a computational model of multitasking. PLoS One. 2010;5(9):e12966.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Borst JP, Taatgen NA, van Rijn H. The problem state: a cognitive bottleneck in multitasking. J Exp Psychol Learn Mem Cogn. 2010;36(2):363–82.PubMedGoogle Scholar
  96. 96.
    Bobko DJ, Schiffman HR, Castino RJ, Chiappetta W. Contextual effects in duration experience. Am J Psychol. 1977;90(4):577–86.PubMedGoogle Scholar
  97. 97.
    Gu BM, Jurkowski AJ, Lake JI, Malapani C, Meck WH. Bayesian models of interval timing and distortions in temporal memory as a function of Parkinson’s disease and dopamine-related error pro cessing. In: Vatakis A, Allman MJ, editors. Time distortions in mind: temporal processing in clinical populations. Boston: Brill Academic Publishers; 2014.Google Scholar
  98. 98.
    Gu BM, Meck WH. New perspectives on Vierordt’s law: memory-mixing in ordinal temporal comparison tasks. Lect Notes Comput Sci. 2011;6789 LNAI:67–78.Google Scholar
  99. 99.
    Lustig C, Meck WH. Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. Brain Cogn. 2005;58(1):9–16.PubMedGoogle Scholar
  100. 100.
    Taatgen N, van Rijn H. Traces of times past: representations of temporal intervals in memory. Mem Cognit. 2011;39(8):1546–60.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks? PLoS One. 2009;4(7):e6268.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Meck WH, MacDonald CJ. Amygdala inactivation reverses fear’s ability to impair divided attention and make time stand still. Behav Neurosci. 2007;121(4):707–20.PubMedGoogle Scholar
  103. 103.
    de Montalembert M, Mamassian P. Processing temporal events simultaneously in healthy human adults and in hemi-neglect patients. Neuropsychologia. 2012;50(5):791–9.PubMedGoogle Scholar
  104. 104.
    Macar F, Vidal F. Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol. 2009;63(3):227–39.PubMedGoogle Scholar
  105. 105.
    Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res. 1999;125(3):271–80.PubMedGoogle Scholar
  106. 106.
    Pouthas V. Electrophysiological evidence for specific processing of temporal information in humans. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 439–56.Google Scholar
  107. 107.
    Wiener M, Kliot D, Turkeltaub PE, Hamilton RH, Wolk DA, Coslett HB. Parietal influence on temporal encoding indexed by simultaneous transcranial magnetic stimulation and electroencephalography. J Neurosci. 2012;32(35):12258–67.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Gontier E, Paul I, Le Dantec C, Pouthas V, Jean-Marie G, Bernard C, et al. ERPs in anterior and posterior regions associated with duration and size discriminations. Neuropsychology. 2009;23(5):668–78.PubMedGoogle Scholar
  109. 109.
    Tecce JJ. Contingent negative variation (CNV) and psychological processes in man. Psychol Bull. 1972;77(2):73–108.PubMedGoogle Scholar
  110. 110.
    Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–4.PubMedGoogle Scholar
  111. 111.
    Leuthold H, Sommer W, Ulrich R. Preparing for action: Inferences from CNV and LRP. J Psychophysiol. 2004;18:77–88.Google Scholar
  112. 112.
    Van Boxtel GJM, Bocker KBE. Cortical measures of anticipation. J Psychophysiol. 2004;18(2–3):61–76.Google Scholar
  113. 113.
    Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage. 2004;21(4):1232–41.PubMedGoogle Scholar
  114. 114.
    Meck WH. Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Res. 2006;1108(1):157–67.PubMedGoogle Scholar
  115. 115.
    Meck WH. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 2006;1109(1):93–107.PubMedGoogle Scholar
  116. 116.
    Kononowicz TW, Van Rijn H. Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci. 2014;34(8):2931–9.PubMedGoogle Scholar
  117. 117.
    Miall C. The storage of time intervals using oscillating neurons. Neural Comput. 1989;1.Google Scholar
  118. 118.
    Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.PubMedGoogle Scholar
  119. 119.
    Kalsbeek A, Merrow M, Roenneberg T, Foster RG. Neurobiology of circadian timing. Preface. Prog Brain Res. 2012;199:xi–xii.Google Scholar
  120. 120.
    Agostino PV, Golombek DA, Meck WH. Unwinding the molecular basis of interval and circadian timing. Front Integr Neurosci. 2011;5:64.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Amitai Y. Membrane potential oscillations underlying firing patterns in neocortical neurons. Neuroscience. 1994;63(1):151–61.PubMedGoogle Scholar
  122. 122.
    Kasanetz F, Riquelme LA, Della-Maggiore V, O’Donnell P, Murer MG. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc Natl Acad Sci U S A. 2008;105(23):8124–9.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kasanetz F, Riquelme LA, Murer MG. Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J Physiol. 2002;543(Pt 2):577–89.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kasanetz F, Riquelme LA, O’Donnell P, Murer MG. Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J Physiol. 2006;577(Pt 1):97–113.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35(1):193–213.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. In: Koch C, Segev I, editors. Methods in neuronal modeling. Cambridge: MIT Press; 1989. p. 135–69.Google Scholar
  127. 127.
    Cheng RK, MacDonald CJ, Meck WH. Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacol Biochem Behav. 2006;85(1):114–22.PubMedGoogle Scholar
  128. 128.
    Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia. 2013;51(2):284–92.PubMedGoogle Scholar
  129. 129.
    Matell MS, Bateson M, Meck WH. Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl). 2006;188(2):201–12.Google Scholar
  130. 130.
    Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Cevik MO. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology. 2012;62(3):1221–9.PubMedGoogle Scholar
  131. 131.
    Matell MS, Meck WH, Nicolelis MA. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci. 2003;117(4):760–73.PubMedGoogle Scholar
  132. 132.
    Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.PubMedGoogle Scholar
  133. 133.
    Merchant H, Perez O, Zarco W, Gamez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.PubMedGoogle Scholar
  134. 134.
    Buonomano DV. The biology of time across different scales. Nat Chem Biol. 2007;3(10):594–7.PubMedGoogle Scholar
  135. 135.
    Gu BM, Cheng RK, Yin B, Meck WH. Quinpirole-induced sensitization to noisy/sparse periodic input: temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience. 2011;179:143–50.PubMedGoogle Scholar
  136. 136.
    MacDonald CJ, Meck WH. Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev. 2004;28(7):747–69.PubMedGoogle Scholar
  137. 137.
    Oswald AM, Chacron MJ, Doiron B, Bastian J, Maler L. Parallel processing of sensory input by bursts and isolated spikes. J Neurosci. 2004;24(18):4351–62.PubMedGoogle Scholar
  138. 138.
    Wang DL. On connectedness: a solution based on oscillatory correlation. Neural Comput. 2000;12(1):131–9.PubMedGoogle Scholar
  139. 139.
    Gu BM, Meck WH. Oscillatory multiplexing of population codes for interval timing and working memory. Neurosci Biobehav Rev, in press.Google Scholar
  140. 140.
    Lustig C, Matell MS, Meck WH. Not “just” a coincidence: frontal-striatal interactions in working memory and interval timing. Memory. 2005;13(3–4):441–8.PubMedGoogle Scholar
  141. 141.
    Broadway JM, Engle RW. Individual differences in working memory capacity and temporal discrimination. PLoS One. 2011;6(10):e25422.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Brown GD, Preece T, Hulme C. Oscillator-based memory for serial order. Psychol Rev. 2000;107(1):127–81.PubMedGoogle Scholar
  143. 143.
    Brown GDA, Chater N. The chronological organization of memory: common psychological foundations for remembering and timing. In: Hoerl C, McCormack T, editors. Time and memory: issues in philosophy and psychology. New York: Oxford University Press; 2001. p. 77–110.Google Scholar
  144. 144.
    Yin B, Meck WH. Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ opioid receptor gene deletion. Philos Trans R Soc Lond B Biol Sci. 2014;369:20120466.PubMedGoogle Scholar
  145. 145.
    Lisman J. Working memory: the importance of theta and gamma oscillations. Curr Biol. 2010;20(11):R490–2.PubMedGoogle Scholar
  146. 146.
    Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44(2):143–63.PubMedGoogle Scholar
  147. 147.
    Van der Meij R, Kahana M, Maris E. Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J Neurosci. 2012;32(1):111–23.PubMedGoogle Scholar
  148. 148.
    Penttonen M, Buzsaki G. Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst. 2003;2:145–52.Google Scholar
  149. 149.
    Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol. 2005;94(3):1904–11.PubMedGoogle Scholar
  150. 150.
    Fortin C, Breton R. Temporal interval production and processing in working memory. Percept Psychophys. 1995;57(2):203–15.PubMedGoogle Scholar
  151. 151.
    Fortin C, Champagne J, Poirier M. Temporal order in memory and interval timing: an interference analysis. Acta Psychol (Amst). 2007;126(1):18–33.Google Scholar
  152. 152.
    Fortin C, Couture E. Short-term memory and time estimation: beyond the 2-second “critical” value. Can J Exp Psychol. 2002;56(2):120–7.PubMedGoogle Scholar
  153. 153.
    Fortin C, Masse N. Order information in short-term memory and time estimation. Mem Cognit. 1999;27(1):54–62.PubMedGoogle Scholar
  154. 154.
    Fortin C, Rousseau R, Bourque P, Kirouac E. Time estimation and concurrent nontemporal processing: specific interference from short-term-memory demands. Percept Psychophys. 1993;53(5):536–48.PubMedGoogle Scholar
  155. 155.
    Burke JF, Zaghloul KA, Jacobs J, Williams RB, Sperling MR, Sharan AD, et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J Neurosci. 2013;33(1):292–304.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Borst JP, Anderson JR. Using model-based functional MRI to locate working memory updates and declarative memory retrievals in the fronto-parietal network. Proc Natl Acad Sci U S A. 2013;110(5):1628–33.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Borst JP, Taatgen NA, van Rijn H. Using a symbolic process model as input for model-based fMRI analysis: locating the neural correlates of problem state replacements. NeuroImage. 2011;58(1):137–47.PubMedGoogle Scholar
  158. 158.
    Shi Z, Church RM, Meck WH. Bayesian optimization of time perception. Trends Cogn Sci. 2013;17(11):556–64.PubMedGoogle Scholar
  159. 159.
    French R, Addyman, C, Mareschal D, Thomas E. GAMIT – a fading-Gaussian activation model of interval timing: unifying prospective and retrospective time estimation. Timing Time Percept Rev (in press).Google Scholar
  160. 160.
    MacDonald CJ. Prospective and retrospective duration memory in the hippocampus: is time in the foreground or background? Philos Trans R Soc Lond B Biol Sci. 2014;369:20120463.Google Scholar
  161. 161.
    MacDonald CJ, Fortin NJ, Sakata S, Meck WH. Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept. 2014;2(1):51–61.Google Scholar
  162. 162.
    Matthews WJ, Meck WH. Time perception: The bad news and the good. WIREs Cogn Sci. 2014;5:429–46.Google Scholar
  163. 163.
    Yin B, Troger AB. Exploring the 4th dimension: hippocampus, time, and memory revisited. Front Integr Neurosci. 2011;5:36.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hedderik van Rijn
    • 1
  • Bon-Mi Gu
    • 2
  • Warren H. Meck
    • 2
    Email author
  1. 1.Department of Experimental PsychologyUniversity of GroningenGroningenNetherlands
  2. 2.Department of Psychology and NeuroscienceDuke UniversityDurhamUSA

Personalised recommendations