Perceiving Temporal Regularity in Music: The Role of Auditory Event-Related Potentials (ERPs) in Probing Beat Perception

  • Henkjan Honing
  • Fleur L. Bouwer
  • Gábor P. Háden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 829)

Abstract

The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in music, we will discuss in how far ERPs, and especially the component called mismatch negativity (MMN), can be instrumental in probing beat perception. We conclude with a discussion on the pitfalls and prospects of using ERPs to probe the perception of a regular beat, in which we present possible constraints on stimulus design and discuss future perspectives.

Keywords

Auditory perception Music cognition Rhythm Beat induction Event-related potentials (ERP) Mismatch-negativity (MMN) Temporal expectation Music 

References

  1. 1.
    Cooper G, Meyer LB. The rhythmic structure of music. Chicago: University of Chicago Press; 1960.Google Scholar
  2. 2.
    Longuet-Higgins HC, Lee CS. The rhythmic interpretation of monophonic music. Music Percept. 1984;1(4):424–41.Google Scholar
  3. 3.
    Fraisse P. Rhythm and tempo. In: Deutsch D, editor. Psychol music. New York: Academic; 1982. p. 149–80.Google Scholar
  4. 4.
    Povel D-J, Essens P. Perception of temporal patterns. Music Percept. 1985;2(4):411–40.Google Scholar
  5. 5.
    Clarke EF. Rhythm and timing in music. In: Deutsch D, editor. Psychol music. 2nd ed. New York: Academic; 1999. p. 473–500.Google Scholar
  6. 6.
    Large EW, Jones MR. The dynamics of attending: how people track time-varying events. Psychol Rev. 1999;106(1):119–59.Google Scholar
  7. 7.
    London J. Hearing in time: psychological aspects of musical meter. 2nd ed. Oxford: Oxford University Press; 2012.Google Scholar
  8. 8.
    Honing H. Structure and interpretation of rhythm in music. In: Deutsch D, editor. Psychol music. 3rd ed. London: Academic; 2013. p. 369–404.Google Scholar
  9. 9.
    Parncutt R. A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept. 1994;11(4):409–64.Google Scholar
  10. 10.
    Desain P, Honing H. Computational models of beat induction: the rule-based approach. J New Music Res. 1999;28(1):29–42.Google Scholar
  11. 11.
    Hannon EE, Trehub SE. Metrical categories in infancy and adulthood. Psychol Sci. 2005;16(1):48–55. http://www.ncbi.nlm.nih.gov/pubmed/15660851.PubMedGoogle Scholar
  12. 12.
    Fitch WT. The biology and evolution of music: a comparative perspective. Cognition. 2006;100(1):173–215. http://www.ncbi.nlm.nih.gov/pubmed/16412411.PubMedGoogle Scholar
  13. 13.
    Honing H, Ploeger A. Cognition and the evolution of music: pitfalls and prospects. Top Cogn Sci. 2012;4(2012):513–24. http://www.ncbi.nlm.nih.gov/pubmed/22760967.PubMedGoogle Scholar
  14. 14.
    Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007;19(5):893–906. http://www.ncbi.nlm.nih.gov/pubmed/17488212.PubMedGoogle Scholar
  15. 15.
    Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci U S A. 2010;107(25):11597–601. http://www.ncbi.nlm.nih.gov/pubmed/20534501.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Handel S. Listening: an introduction to the perception of auditory events. Cambridge: MIT Press; 1989.Google Scholar
  17. 17.
    Clarke EF, Cook N. Empirical musicology: aims, methods, prospects. Oxford: Oxford University Press; 2004.Google Scholar
  18. 18.
    Honing H. Without it no music: beat induction as a fundamental musical trait. Ann N Y Acad Sci. 2012;1252(1):85–91. http://www.ncbi.nlm.nih.gov/pubmed/22524344.PubMedGoogle Scholar
  19. 19.
    Phillips-Silver J, Trainor LJ. Feeling the beat: movement influences infant rhythm perception. Science. 2005;308(5727):1430. http://www.ncbi.nlm.nih.gov/pubmed/15933193.PubMedGoogle Scholar
  20. 20.
    Zentner M, Eerola T. Rhythmic engagement with music in infancy. Proc Natl Acad Sci U S A. 2010;107(13):5768–73. http://www.ncbi.nlm.nih.gov/pubmed/20231438.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Winkler I, Háden GP, Ladinig O, Sziller I, Honing H. Newborn infants detect the beat in music. Proc Natl Acad Sci U S A. 2009;106(7):2468–71. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2631079&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hannon EE, Johnson SP. Infants use meter to categorize rhythms and melodies: implications for musical structure learning. Cogn Psychol. 2005;50(4):354–77. http://www.ncbi.nlm.nih.gov/pubmed/15893524.PubMedGoogle Scholar
  23. 23.
    Ladinig O, Honing H, Háden GP, Winkler I. Probing attentive and preattentive emergent meter in adult listeners without extensive music training. Music Percept. 2009;26(4):377–86.Google Scholar
  24. 24.
    Ladinig O, Honing H, Háden GP, Winkler I. Erratum to probing attentive and pre-attentive emergent meter in adult listeners with no extensive music training. Music Percept. 2011;26:444.Google Scholar
  25. 25.
    Patel AD. Music, language and the brain. Oxford: Oxford University Press; 2008.Google Scholar
  26. 26.
    Repp BH, Penel A. Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J Exp Psychol Hum Percept Perform. 2002;28(5):1085–99.PubMedGoogle Scholar
  27. 27.
    Bolger D, Trost W, Schön D. Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychol (Amst). 2013;142(2):238–44. http://www.ncbi.nlm.nih.gov/pubmed/23357092.Google Scholar
  28. 28.
    Grahn JA, Henry MJ, McAuley JD. FMRI investigation of cross-modal interactions in beat perception: audition primes vision, but not vice versa. Neuroimage. 2011;54(2):1231–43. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3002396&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Patel AD, Iversen JR, Bregman MR, Schulz I. Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr Biol. 2009;19(10):827–30. http://www.ncbi.nlm.nih.gov/pubmed/19409790.PubMedGoogle Scholar
  30. 30.
    Schachner A, Brady TF, Pepperberg IM, Hauser MD. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr Biol. 2009;19(10):831–6. http://www.ncbi.nlm.nih.gov/pubmed/19409786.PubMedGoogle Scholar
  31. 31.
    Hasegawa A, Okanoya K, Hasegawa T, Seki Y. Rhythmic synchronization tapping to an audio–visual metronome in budgerigars. Sci Rep. 2011;1:1–8. http://www.nature.com/doifinder/10.1038/srep00120.Google Scholar
  32. 32.
    Zarco W, Merchant H, Prado L, Mendez JC. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol. 2009;102(6):3191–202. http://www.ncbi.nlm.nih.gov/pubmed/19812296.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Honing H, Merchant H, Háden GP, Prado L, Bartolo R. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One. 2012;7(12):e51369.PubMedPubMedCentralGoogle Scholar
  34. 34.
    de Waal F, Ferrari PF. Towards a bottom-up perspective on animal and human cognition. Trends Cogn Sci. 2010;14(5):201–7. http://www.ncbi.nlm.nih.gov/pubmed/20363178.PubMedGoogle Scholar
  35. 35.
    Patel AD. Musical rhythm, linguistic rhythm, and human evolution. Music Percept. 2006;24(1):99–104. http://caliber.ucpress.net/doi/abs/10.1525/mp.2006.24.1.99.Google Scholar
  36. 36.
    Fitch WT. Biology of music: another one bites the dust. Curr Biol. 2009;19(10):403–4. http://www.ncbi.nlm.nih.gov/pubmed/19467205.Google Scholar
  37. 37.
    Cook P, Rouse A, Wilson M, Reichmuth C. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J Comp Psychol. 2013;127(2):412. http://doi.apa.org/getdoi.cfm?doi=10.1037/a0032345.PubMedGoogle Scholar
  38. 38.
    Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, et al. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol. 2006;41(2):345–54. http://www.sciencedirect.com/science/article/pii/S1055790306001977.PubMedGoogle Scholar
  39. 39.
    Large EW. Resonating to musical rhythm: theory and experiment. In: Grondin S, editor. Psychol time. Bingley: Emerald Group; 2008. p. 189–231.Google Scholar
  40. 40.
    Grube M, Griffiths TD. Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex. 2009;45(1):72–9. http://www.ncbi.nlm.nih.gov/pubmed/19058797.PubMedGoogle Scholar
  41. 41.
    Desain P, Honing H. The formation of rhythmic categories and metric priming. Perception. 2003;32(3):341–65. http://www.ncbi.nlm.nih.gov/pubmed/12729384.PubMedGoogle Scholar
  42. 42.
    London J. Cognitive constraints on metric systems: some observations and hypotheses. Music Percept. 2002;19(4):529–50.Google Scholar
  43. 43.
    Ellis RJ, Jones MR. The role of accent salience and joint accent structure in meter perception. J Exp Psychol Hum Percept Perform. 2009;35(1):264–80. http://www.ncbi.nlm.nih.gov/pubmed/19170487.PubMedGoogle Scholar
  44. 44.
    Lerdahl F, Jackendoff R. An overview of hierarchical structure in music. Music Percept. 1983;1(2):229–52.Google Scholar
  45. 45.
    Snyder JS, Krumhansl CL. Tapping to ragtime: cues to pulse finding. Music Percept. 2001;18(4):455–89. http://apps.isiknowledge.com/CitedFullRecord.do?product=UA&db_id=WOS&SID=N1keaj3j11cakI5aIIi&search_mode=CitedFullRecord&isickref=120772261.Google Scholar
  46. 46.
    Hannon EE, Snyder JS, Eerola T, Krumhansl CL. The role of melodic and temporal cues in perceiving musical meter. J Exp Psychol Hum Percept Perform. 2004;30(5):956–74. http://www.ncbi.nlm.nih.gov/pubmed/15462633.PubMedGoogle Scholar
  47. 47.
    Tierney A, Kraus N. Neural responses to sounds presented on and off the beat of ecologically valid music. Front Syst Neurosci. 2013;7:1–7. http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2013.00014/abstract.Google Scholar
  48. 48.
    Brochard R, Abecasis D, Potter D, Ragot R, Drake C. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol Sci. 2003;14(4):362–6. http://www.ncbi.nlm.nih.gov/pubmed/12807411.PubMedGoogle Scholar
  49. 49.
    Potter DD, Fenwick M, Abecasis D, Brochard R. Perceiving rhythm where none exists: event-related potential (ERP) correlates of subjective accenting. Cortex. 2009;45(1):103–9. http://www.ncbi.nlm.nih.gov/pubmed/19027894.PubMedGoogle Scholar
  50. 50.
    Hannon EE, Trehub SE. Tuning in to musical rhythms: infants learn more readily than adults. Proc Natl Acad Sci U S A. 2005;102(35):12639–43. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1194930&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gerry DW, Faux AL, Trainor LJ. Effects of Kindermusik training on infants’ rhythmic enculturation. Dev Sci. 2010;13(3):545–51. http://www.ncbi.nlm.nih.gov/pubmed/20443974.PubMedGoogle Scholar
  52. 52.
    Iversen JR, Repp BH, Patel AD. Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci. 2009;1169:58–73. http://www.ncbi.nlm.nih.gov/pubmed/19673755.PubMedGoogle Scholar
  53. 53.
    Nozaradan S, Peretz I, Missal M, Mouraux A. Tagging the neuronal entrainment to beat and meter. J Neurosci. 2011;31(28):10234–40. http://www.ncbi.nlm.nih.gov/pubmed/21753000.PubMedGoogle Scholar
  54. 54.
    Jones MR. Musical time. In: Hallam S, Cross I, Thaut M, editors. Oxford handbook of music psychol. Oxford: Oxford University Press; 2009. p. 81–92.Google Scholar
  55. 55.
    Drake C, Jones MR, Baruch C. The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition. 2000;77(3):251–88. http://www.ncbi.nlm.nih.gov/pubmed/11018511.PubMedGoogle Scholar
  56. 56.
    Jones MR, Moynihan H, MacKenzie N, Puente J. Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci. 2002;13(4):313–9. http://pss.sagepub.com/lookup/doi/10.1111/1467-9280.00458.PubMedGoogle Scholar
  57. 57.
    Quené H, Port RF. Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica. 2005;62(1):1–13. http://www.ncbi.nlm.nih.gov/pubmed/16116301.PubMedGoogle Scholar
  58. 58.
    Snyder JS, Large EW. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn Brain Res. 2005;24(1):117–26. http://www.ncbi.nlm.nih.gov/pubmed/15922164.Google Scholar
  59. 59.
    Zanto TP, Large EW, Fuchs A, Kelso JAS. Gamma-band responses to perturbed auditory sequences: evidence for synchronization of perceptual processes. Music Percept. 2005;22(3):531–47.Google Scholar
  60. 60.
    Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic Beta oscillations. J Neurosci. 2012;32(5):1791–802. http://www.ncbi.nlm.nih.gov/pubmed/22302818.PubMedGoogle Scholar
  61. 61.
    Smith LM, Honing H. Time–frequency representation of musical rhythm by continuous wavelets. J Math Music. 2008;2(2):81–97. http://www.tandfonline.com/doi/abs/10.1080/17459730802305336.Google Scholar
  62. 62.
    Grahn JA, Rowe JB. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci. 2009;29(23):7540–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2702750&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008;18(12):2844–54. http://www.ncbi.nlm.nih.gov/pubmed/18388350.PubMedGoogle Scholar
  64. 64.
    Bengtsson SL, Ullén F, Ehrsson HH, Hashimoto T, Kito T, Naito E, et al. Listening to rhythms activates motor and premotor cortices. Cortex. 2009;45(1):62–71. http://www.ncbi.nlm.nih.gov/pubmed/19041965.PubMedGoogle Scholar
  65. 65.
    Grahn JA. Neuroscientific investigations of musical rhythm: recent advances and future challenges. Contemp Music Rev. 2009;28(3):251–77. http://www.informaworld.com/openurl?genre=article&doi=10.1080/07494460903404360&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3.Google Scholar
  66. 66.
    Grahn JA. Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci. 2012;4(4):585–606. http://www.ncbi.nlm.nih.gov/pubmed/22811317.PubMedGoogle Scholar
  67. 67.
    Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3074096&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Honing H, Ladinig O, Háden GP, Winkler I. Is beat induction innate or learned? probing emergent meter perception in adults and newborns using event-related brain potentials. Ann N Y Acad Sci. 2009;1169:93–6. http://www.ncbi.nlm.nih.gov/pubmed/19673760.PubMedGoogle Scholar
  69. 69.
    Merchant H, Honing H. Are non-human primates capable of rhythmic entrainment? evidence for the gradual audiomotor evolution hypothesis. Front Neurosci. 2013;7:274.Google Scholar
  70. 70.
    Luck S. An introduction to the event-related potential technique. 2005. http://mitpress.mit.edu/catalog/item/default.asp?tid=10677&ttype=2.
  71. 71.
    Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2715154&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Patel SH, Azzam PN. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci. 2005;2(4):147–54. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1252727&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Horváth J, Winkler I, Bendixen A. Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol. 2008;79(2):139–47. http://www.ncbi.nlm.nih.gov/pubmed/18468765.PubMedGoogle Scholar
  74. 74.
    Rinne T, Särkkä A, Degerman A, Schröger E, Alho K. Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res. 2006;1077(1):135–43. http://www.ncbi.nlm.nih.gov/pubmed/16487946.PubMedGoogle Scholar
  75. 75.
    Comerchero MD, Polich J. P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol. 1999;110(1):24–30. http://www.ncbi.nlm.nih.gov/pubmed/10348317.PubMedGoogle Scholar
  76. 76.
    Schröger E, Winkler I. Presentation rate and magnitude of stimulus deviance effects on human pre-attentive change detection. Neurosci Lett. 1995;193:185–8.PubMedGoogle Scholar
  77. 77.
    Fitzgerald P, Picton T. Event-related potentials recorded during the discrimination of improbable stimuli. Biol Psychol. 1983;17(4):241–76. http://www.sciencedirect.com/science/article/pii/0301051183900030.PubMedGoogle Scholar
  78. 78.
    Schwartze M, Rothermich K, Schmidt-Kassow M, Kotz SA. Temporal regularity effects on pre-attentive and attentive processing of deviance. Biol Psychol. 2011;87(1):146–51. http://www.ncbi.nlm.nih.gov/pubmed/21382437.PubMedGoogle Scholar
  79. 79.
    Schmidt-Kassow M, Kotz SA. Attention and perceptual regularity in speech. Neuroreport. 2009;20:1643–7.PubMedGoogle Scholar
  80. 80.
    Winkler I. Interpreting the mismatch negativity. J Psychophysiol. 2007;21(3):147–63. http://psycontent.metapress.com/openurl.asp?genre=article&id=doi:10.1027/0269-8803.21.34.147.Google Scholar
  81. 81.
    Winkler I, Czigler I. Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol. 2012;83(2):132–43. http://www.ncbi.nlm.nih.gov/pubmed/22047947.PubMedGoogle Scholar
  82. 82.
    Paavilainen P, Arajärvi P, Takegata R. Preattentive detection of nonsalient contingencies between auditory features. Neuroreport. 2007;18(2):159–63. http://www.ncbi.nlm.nih.gov/pubmed/17301682.PubMedGoogle Scholar
  83. 83.
    Yabe H, Tervaniemi M, Reinikainen K, Näätänen R. Temporal window of integration revealed by MMN to sound omission. Neuroreport. 1997;8(8):1971–4. http://www.ncbi.nlm.nih.gov/pubmed/9223087.PubMedGoogle Scholar
  84. 84.
    Bendixen A, SanMiguel I, Schröger E. Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol. 2012;83(2):120–31. http://www.sciencedirect.com/science/article/pii/S0167876011002376.PubMedGoogle Scholar
  85. 85.
    Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):2544–90. http://www.ncbi.nlm.nih.gov/pubmed/17931964.PubMedGoogle Scholar
  86. 86.
    Kujala T, Tervaniemi M, Schröger E. The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol. 2007;74(1):1–19. http://www.ncbi.nlm.nih.gov/pubmed/16844278.PubMedGoogle Scholar
  87. 87.
    Haroush K, Hochstein S, Deouell LY. Momentary fluctuations in allocation of attention: cross-modal effects of visual task load on auditory discrimination. J Cogn Neurosci. 2010;22(7):1440–51. http://www.ncbi.nlm.nih.gov/pubmed/19580389.PubMedGoogle Scholar
  88. 88.
    Sussman ES. A new view on the MMN and attention debate. J Psychophysiol. 2007;21(3):164–75. http://psycontent.metapress.com/openurl.asp?genre=article&id=doi:10.1027/0269-8803.21.34.164.Google Scholar
  89. 89.
    Alho K, Woods DL, Algazi A, Näätänen R. Intermodal selective attention. II. effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalogr Clin Neurophysiol. 1992;82:356–68. http://www.ncbi.nlm.nih.gov/pubmed/1374704.PubMedGoogle Scholar
  90. 90.
    Csépe V, Karmos G, Molnár M. Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat -animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol. 1987;66(6):571–8. http://www.ncbi.nlm.nih.gov/pubmed/2438122.PubMedGoogle Scholar
  91. 91.
    Novitski N, Tervaniemi M, Huotilainen M, Näätänen R. Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cogn Brain Res. 2004;20(1):26–36. http://www.ncbi.nlm.nih.gov/pubmed/15130586.Google Scholar
  92. 92.
    Bouwer F, van Zuijen TL, Honing H (in prep).Google Scholar
  93. 93.
    Geiser E, Ziegler E, Jancke L, Meyer M. Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex. 2009;45(1):93–102. http://www.ncbi.nlm.nih.gov/pubmed/19100973.PubMedGoogle Scholar
  94. 94.
    Vuust P, Pallesen KJ, Bailey C, van Zuijen TL, Gjedde A, Roepstorff A, et al. To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage. 2005;24(2):560–4. http://www.ncbi.nlm.nih.gov/pubmed/15627598.PubMedGoogle Scholar
  95. 95.
    Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex. 2009;45(1):80–92. http://www.ncbi.nlm.nih.gov/pubmed/19054506.PubMedGoogle Scholar
  96. 96.
    Geiser E, Sandmann P, Jäncke L, Meyer M. Refinement of metre perception – training increases hierarchical metre processing. Eur J Neurosci. 2010;32(11):1979–85. http://www.ncbi.nlm.nih.gov/pubmed/21050278.PubMedGoogle Scholar
  97. 97.
    Winkler I, Kushnerenko E, Horváth J, Ceponiene R, Fellman V, Huotilainen M, et al. Newborn infants can organize the auditory world. Proc Natl Acad Sci U S A. 2003;100(20):11812–5. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=208846&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Stefanics G, Háden GP, Huotilainen M, Balázs L, Sziller I, Beke A, et al. Auditory temporal grouping in newborn infants. Psychophysiology. 2007;44(5):697–702. http://www.ncbi.nlm.nih.gov/pubmed/17532802.PubMedGoogle Scholar
  99. 99.
    Čėponiené R, Kushnerenko E, Fellman V, Renlund M, Suominen K, Näätänen R. Event-related potential features indexing central auditory discrimination by newborns. Cogn Brain. 2002;13:101–13. http://www.sciencedirect.com/science/article/pii/S0926641001000933.Google Scholar
  100. 100.
    Cheour M, Čėponiené R, Leppänen P, Alho K, Kujala T, Renlund M, et al. The auditory sensory memory trace decays rapidly in newborns. Scand J Psychol. 2002;43:33–9. http://onlinelibrary.wiley.com/doi/10.1111/1467-9450.00266/abstract.PubMedGoogle Scholar
  101. 101.
    Trainor LJ, Samuel SS, Desjardins RN, Sonnadara R. Measuring temporal resolution in infants using mismatch negativity. Neuroreport. 2001;12(11):2443–8. http://www.ncbi.nlm.nih.gov/pubmed/11496126.PubMedGoogle Scholar
  102. 102.
    Trainor LJ, McFadden M, Hodgson L, Darragh L, Barlow J, Matsos L, et al. Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. Int J Psychophysiol. 2003;51:5–15. http://www.sciencedirect.com/science/article/pii/S016787600300148X.PubMedGoogle Scholar
  103. 103.
    Háden GP, Honing H, Winkler I. Newborn infants are sensitive to sound timing. 12th Intl. Conf Music Percept Cogn. 2012. p. 378–9.Google Scholar
  104. 104.
    Woodman GF. Homologues of human ERP components in nonhuman primates. In: Luck SJ, Kappenman ES, editors. Oxford handbook of event-related potential components. New York: Oxford University Press; 2011.Google Scholar
  105. 105.
    Näätänen R, Kujala T, Winkler I. Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology. 2010;48:4–22. http://www.ncbi.nlm.nih.gov/pubmed/20880261.PubMedGoogle Scholar
  106. 106.
    Nelken I, Ulanovsky N. Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol. 2007;21(3):214–23. http://psycontent.metapress.com/openurl.asp?genre=article&id=doi:10.1027/0269-8803.21.34.214.Google Scholar
  107. 107.
    Nakamura T, Michie PT, Fulham WR, Todd J, Budd TW, Schall U, et al. Epidural auditory event-related potentials in the rat to frequency and duration deviants: evidence of mismatch negativity? Front Psychol. 2011;2:1–17. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3238418&tool=pmcentrez&rendertype=abstract.Google Scholar
  108. 108.
    Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G. Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol. 2001;112(5):778–84. http://www.ncbi.nlm.nih.gov/pubmed/11336892.PubMedGoogle Scholar
  109. 109.
    Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G. Effect of deviant probability and interstimulus/interdeviant interval on the auditory N1 and mismatch negativity in the cat auditory cortex. Cogn Brain Res. 2002;13(2):249–53. http://www.ncbi.nlm.nih.gov/pubmed/11958968.Google Scholar
  110. 110.
    Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG. Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol. 1992;83(1):87–90. http://www.sciencedirect.com/science/article/pii/0013469492901377.PubMedGoogle Scholar
  111. 111.
    Javitt DC, Steinschneider M, Schroeder CE, Vaughan Jr HG, Arezzo JC. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res. 1994;667(2):192–200. http://www.sciencedirect.com/science/article/pii/0006899394914966.PubMedGoogle Scholar
  112. 112.
    Ruusuvirta T, Koivisto K, Wikgren J, Astikainen P. Processing of melodic contours in urethane-anaesthetized rats. Eur J Neurosci. 2007;26(3):701–3. http://www.ncbi.nlm.nih.gov/pubmed/17634069.PubMedGoogle Scholar
  113. 113.
    Umbricht D, Vyssotki D, Latanov A, Nitsch R, Lipp H-P. Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clin Neurophysiol. 2005;116(2):353–63. http://www.ncbi.nlm.nih.gov/pubmed/15661113.PubMedGoogle Scholar
  114. 114.
    Ueno A, Hirata S, Fuwa K, Sugama K, Kusunoki K, Matsuda G, et al. Auditory ERPs to stimulus deviance in an awake chimpanzee (Pan troglodytes): towards hominid cognitive neurosciences. In: Rustichini A, editor. PLoS One. Public Library of Science; 2008;3(1):5. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2174528&tool=pmcentrez&rendertype=abstract.
  115. 115.
    Arriaga G, Zhou EP, Jarvis ED. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. In: Larson CR, editor. PLoS One. 2012;7(10):1–15. http://dx.plos.org/10.1371/journal.pone.0046610FigureLegends.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Henkjan Honing
    • 1
  • Fleur L. Bouwer
    • 1
  • Gábor P. Háden
    • 1
  1. 1.Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations