Leg, Foot, and Ankle Injury Biomechanics

  • Robert S. SalzarEmail author
  • W. Brent Lievers
  • Ann M. Bailey
  • Jeff R. Crandall


Though rarely life-threatening by themselves, lower extremity injuries are often a debilitating and costly injury affecting the broad populace, and can occur as result of a variety of different injury mechanisms. This chapter details basic lower extremity anthropometry, and reviews the currently available studies and injury criteria available for automotive, sports, and military related injury mechanisms. Detailed analysis and critique of published injury studies are presented.


Subtalar Joint National Football League Injury Criterion Lower Extremity Injury Lower Limb Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Crandall J, Portier L, Petit P, Hall G, Klopp G, Bass C, Hurwitz S, Trosseille X, Tarriere C, Pilkey W, Lavaste F, Lassau M (1996) Biomechanical response and physical properties of the leg, foot, and ankle. Paper 962424, Society of Automotive EngineeringGoogle Scholar
  2. 2.
    Parham KR, Gordon CC, Bensel CK (1992) Anthropometry of the foot and lower leg of U.S. army soldiers: Fort Jackson, SC—1985. United States Army Natick Research, Development and Engineering Center, NatickGoogle Scholar
  3. 3.
    Diffrient N, Tilley AR, Bardagjy JC (1974) Humanscale 1/2/3. The MIT Press, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  4. 4.
    Rupp J, Reed M, Van Ee C, Kuppa S, Wang S, Goulet J, Schneider L (2002) The tolerance of the human hip to dynamic knee loading. Stapp Car Crash J 46:211–228PubMedGoogle Scholar
  5. 5.
    Kuppa S, Fessahaie O (2003) An overview of knee-thigh-hip injuries in frontal crashes in the United States. Paper 416. In: Proceedings of the 18th international technical conference on the enhanced safety of vehiclesGoogle Scholar
  6. 6.
    Nyquist G (1986) Injury tolerance characteristics of the adult human lower extremities under static and dynamic loading. SAE paper 861925, Society of Automotive EngineersGoogle Scholar
  7. 7.
    Mather BS (1967) Correlations between strength and other properties of long bones. J Trauma 7(5): 633–638PubMedCrossRefGoogle Scholar
  8. 8.
    Mather SB (1968) Impact tolerance of the human leg. J Trauma 8(6):1084–1088PubMedCrossRefGoogle Scholar
  9. 9.
    Yamada H (1970) Strength of biological materials. The Williams and Wilkins, BaltimoreGoogle Scholar
  10. 10.
    Nyquist G, Cheng R, El-Bohy A, King A (1985) Tibia bending: strength and response. SAE Paper 851728, The Society of Automotive EngineersGoogle Scholar
  11. 11.
    Rabl W, Haid C, Krismer M (1996) Biomechanical properties of the human tibia: fracture behavior and morphology. Forensic Sci Int 83:39–49PubMedCrossRefGoogle Scholar
  12. 12.
    Schreiber P, Crandall J, Micek T, Hurwitz S, Nusholtz G (1997) Static and dynamic bending strength of the leg. In: Proceedings of the IRCOBI conference on the biomechanics of impact. Hanover, 24–26 Sept 1997Google Scholar
  13. 13.
    Kerrigan J, Bhalla K, Madeley NJ, Funk J, Bose D, Crandall J (2003a) Experiments for establishing pedestrian-impact lower limb injury criteria’. SAE 2003-01-0895. Society of Automotive Engineers (SAE) Congress, DetroitGoogle Scholar
  14. 14.
    Kerrigan J, Bhalla K, Madeley NJ, Crandall J, Deng B (2003b) Response corridors for the human leg in 3-point lateral bending. Paper 1281. The 7th US National Congress on computational mechanics, AlbuquerqueGoogle Scholar
  15. 15.
    Kerrigan J, Drinkwater DC, Kam CY, Murphy D, Ivarsson BJ, Crandall J, Patrie J (2004) Tolerance of the human leg and thigh in dynamic latero-medial bending. Int J Crashworthiness 9(6):607–623CrossRefGoogle Scholar
  16. 16.
    Ivarsson J, Kerrigan J, Lessley D, Drinkwater C, Kam C, Murphy D, Crandall J, Kent R (2005) Dynamic response corridors of the human thigh and leg in non-midpoint three-point bending. Paper no. 2005-01-0305, Society of Automotive EngineersGoogle Scholar
  17. 17.
    Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59(7):954–962PubMedGoogle Scholar
  18. 18.
    McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4): 1231–1236PubMedGoogle Scholar
  19. 19.
    Martens M, van Audekercke R, de Meester P, Mulier J (1980) The mechanical characteristics of the long bones of the lower extremity in torsional loading. J Biomech 13:667–676PubMedCrossRefGoogle Scholar
  20. 20.
    Kent RW, Funk JR (2004) Data censoring and parametric distribution assignment in the development of injury risk functions from biomechanical data. SAE 2004-01-0317. Society of Automotive Engineers (SAE) Congress, DetroitGoogle Scholar
  21. 21.
    Crandall J, Funk J, Rudd R, Tourret L (1999) The tibia index: a step in the right direction. In: Proceedings of the Toyota international symposium on human life support biomechanics. Nagoya, JapanGoogle Scholar
  22. 22.
    Mertz HJ (1993) Antropometric test devices. In: Nahum AM, Melvin JW (eds) Accidental injury: biomechanics and prevention. Springer-Verlage, New YorkGoogle Scholar
  23. 23.
    Kjaersgaard-Anderson P, Wethelund JO, Helmig P, Soballe K (1988) The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. Am J Sports Med 16(5): 512–516CrossRefGoogle Scholar
  24. 24.
    Parenteau CS, Viano DC, Petit PY (1998) Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. J Biomech Eng 120:105–111PubMedCrossRefGoogle Scholar
  25. 25.
    Petit P, Portier L, Foret-Bruno JY, Trosseille X, Parenteau C, Coltat JC, Tarrière C, Lassau JP (1996) Quasistatic characterization of the human foot-ankle joints in a simulated tensed state and updated accidentological data. In: Proceedings of the international research council on the biomechanics of impact. Dublin, Ireland, pp 363–376Google Scholar
  26. 26.
    Jaffredo A, Potier P, Robin S, Le Coz JY, Lassau JP (2000) Cadaver lower limb dynamic response in inversion-eversion. In: Proceedings of the IRCOBI conference on the biomechanics of impact. Montpellier, FranceGoogle Scholar
  27. 27.
    Funk JR, Crandall JR, Tourret L, MacMahon C, Bass CR, Khaewpong K, Eppinger R (2002) The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J Biomed Eng 124:750–757Google Scholar
  28. 28.
    Morgan RM, Eppinger RH, Hennessey BC (1991) Ankle joint injury mechanism for adults in frontal automotive impact. Paper 912902, Stapp Car Crash Conference. San Diego, CAGoogle Scholar
  29. 29.
    Lauge-Hansen N (1950) Fractures of the ankle II: combined experimental-surgical and experimental-roentgenologic investigations. Arch Surg 60:957–985PubMedCrossRefGoogle Scholar
  30. 30.
    Dias LS (1979) The lateral ankle sprain: an experimental study. J Trauma 19:266–269PubMedCrossRefGoogle Scholar
  31. 31.
    Rasmussen O, Kromann Andersen C (1983) Experimental ankle injuries analysis of the traumatology of the ankle ligaments. Acta Orthop Scand 54(3):356–362PubMedCrossRefGoogle Scholar
  32. 32.
    Begeman P, Balakrishnan P, Levine R, King A (1993) Dynamic human ankle response to inversion and eversion. In: Proceedings of the 37th Stapp Car Crash Conference. San Antonio, TX. SAE 933115, pp 83–93Google Scholar
  33. 33.
    Funk JR, Srinivasan SCM, Crandall JR, Khaewpong N, Eppinger RH, Jaffredo AS, Potier P, Petit PY (2002) The effects of axial preload and dorsiflexion on the tolerance of the ankle/subtalar joint to dynamic inversion and eversion. Stapp Car Crash J 46:245–265PubMedGoogle Scholar
  34. 34.
    Schreiber P, Crandall J, Dekel E, Hall G, Pilkey W (1995) The effects of lower extremity boundary conditions on ankle response during joint rotation tests. In: Proceedings of the 23rd international workshop on human subjects for biomechanical research. San Diego, CAGoogle Scholar
  35. 35.
    Colville MR, Marder RA, Boyle JJ, Zarins B (1990) Strain measurement in lateral ankle ligaments. Am J Sports Med 18(2):196PubMedCrossRefGoogle Scholar
  36. 36.
    Begeman PC, Prasad P (1990) Human ankle impact response in dorsiflexion. In: Proceedings of the 34th Stapp Car Crash Conference. Society of Automotive Engineers, pp 39–53Google Scholar
  37. 37.
    Begeman P, Balakrishnan P, Levine R, King A (1992) Human ankle response in dorsiflexion. Injury prevention through biomechanics symposium proceedings, Wayne State UniversityGoogle Scholar
  38. 38.
    Portier L, Petit P, Domont A, Trosseille X, Le Coz J-Y, Tarriere C, Lassau J-P (1997) Dynamic biomechanical dorsiflexion responses and tolerances of the ankle joint complex. SAE paper 973330, pp 207–224Google Scholar
  39. 39.
    Rudd R, Crandall J, Millington S, Hurwitz S (2004) Injury tolerance and response of the ankle joint in dynamic dorsiflexion. Stapp Car Crash J. Nashville, TN, 48:1–26Google Scholar
  40. 40.
    Kennett K, Crandall J, Bass C, Klopp G (1996) In situ measurement of loads in the tibia. In: Proceedings of the 24th international workshop on human subjects for biomechanical research. Albuquerque, NMGoogle Scholar
  41. 41.
    Fleming BC, Good L, Peura GD, Beynnon BD (1999) Calibration and application of an intra-articular force transducer for the measurement of patellar tendon graft forces: an in situ evaluation. J Biomech Eng 121(4):393–398PubMedCrossRefGoogle Scholar
  42. 42.
    Hall G, Klopp G, Crandall J, Carmines D, Hale J (1997) Rate independent characteristics of an arthroscopically implantable force probe in the Achilles tendon. In: Proceedings of the 21st annual meeting of the American Society of Biomechanics. Clemson University, SCGoogle Scholar
  43. 43.
    Fleming BC, Peura GD, Beynnon BD (2000) Factors influencing the output of an implantable force transducer. J Biomech 33:889–893PubMedCrossRefGoogle Scholar
  44. 44.
    Kajzer J, Cavallero C, Ghanouchi S, Bonnoit J, Ghorbel A (1990) Response of the knee joint in lateral impact-effect of shearing loads. In: Proceedings of the IRCOBI conference on the biomechanics of impact, Berlin, 11–13 Sept 1990Google Scholar
  45. 45.
    Kajzer J, Schroeder G, Ishikawa H, Matsui Y, Bosch U (1997) Shearing and bending effects at the knee joint at high speed lateral loading. SAE paper 973326, Society of Automotive EngineersGoogle Scholar
  46. 46.
    Kajzer J, Ishikawa H, Matsui Y, Schroeder G, Bosch U (1999) Shearing and bending effects at the knee joint at low speed lateral loading. SAE paper 1999-01-0712, Society of Automotive EngineersGoogle Scholar
  47. 47.
    Kajzer J, Cavallero C, Bonnoit J, Morjane A, Ghanouchi S (1993) Response of the knee joint in lateral impact-effect of bending moment. In: Proceedings of the international conference on the biomechanics of impact (IRCOBI), Eindhoven, 8–10 Sept 1993Google Scholar
  48. 48.
    Kerrigan JR, Ivarsson BJ, Bose D, Madeley NJ, Millington SA, Bhalla KS, Crandall JR (2003) Rate-sensitive constitutive and failure properties of human collateral knee ligaments. In: Proceedings of the international research council on the biomechanics of impacts (IRCOBI) conference. Lisbon, PortugalGoogle Scholar
  49. 49.
    Konosu A, Issiki T, Tanahashi M (2005) Development of a biofidelic flexible pedestrian leg-form impactor (Flex-Pli 2004) and evaluation of its biofidelity at the component level and at the assembly level. Paper 2005-01-1879, Society of Automotive Engineers (SAE)Google Scholar
  50. 50.
    Ramet M, Bouquet R, Bermond F, Caire Y (1995) Shearing and bending human knee joint tests in quasi-static lateral load. In: Proceedings of the IRCOBI conference on the biomechanics of impact. Brunnen, SwitzerlandGoogle Scholar
  51. 51.
    Bose D, Bhalla K, Rooij L, Millington S, Studley A, Crandall J (2004) Response of the knee joint to the pedestrian impact loading environment. Paper no. 2004-01-1608. World Congress SAE, DetroitGoogle Scholar
  52. 52.
    Bose D, Bhalla K, Untaroiu C, Ivarsson BJ, Crandall J, Hurwitz S (2008) Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading. J Biomech Eng 130(3):031008. doi:  10.1115/1.2907767
  53. 53.
    Ivarsson J, Lessley D, Kerrigan J, Bhalla K, Bose D, Crandall J, Kent R (2004) Dynamic response corridors and injury thresholds of the pedestrian lower extremities. In: Proceedings of the IRCOBI conference on the biomechanics of impact, GrazGoogle Scholar
  54. 54.
    Kaplan LD, Jost PW, Honkamp N, Norwig J, West R, Bradley JP (2011) Incidence and variance of foot and ankle injuries in elite college football players. Am J Orthop 40(1):40–44PubMedGoogle Scholar
  55. 55.
    Orendurff MS, Rohr ES, Segal AD, Medley JW, Green JR III, Kadel NJ (2008) Regional foot pressure during running, cutting, jumping, and landing. Am J Sports Med 36(3):566–571. doi:10.1177/ 0363546507309315PubMedCrossRefGoogle Scholar
  56. 56.
    Bowers KD Jr, Martin RB (1976) Turf-toe: a shoe-surface related football injury. Med Sci Sports 8(2):81–83PubMedGoogle Scholar
  57. 57.
    Anderson RB (2002) Turf toe injuries of the hallux metatarsophalangeal joint. Tech Foot Ankle Surg 1(2):102–111. doi: 10.1097/00132587-200212000-00004 CrossRefGoogle Scholar
  58. 58.
    Frimenko RE, Lievers WB, Coughlin MJ, Anderson RB, Crandall JR, Kent RW (2012) Etiology and biomechanics of first metatarsophalangeal joint sprains (turf toe) in athletes. Crit Rev Biomed Eng 40(1): 43–61PubMedCrossRefGoogle Scholar
  59. 59.
    Rodeo SA, O’Brien S, Warren RF, Barnes R, Wickiewicz TL, Dillingham MF (1990) Turf-toe: an analysis of metatarsophalangeal joint sprains in professional football players. Am J Sports Med 18(3): 280–285PubMedCrossRefGoogle Scholar
  60. 60.
    Frey C, Andersen GD, Feder KS (1996) Plantarflexion injury to the metatarsophalangeal joint (“sand toe”). Foot Ankle Int 17(9):576–581PubMedCrossRefGoogle Scholar
  61. 61.
    Prieskorn D, Graves S, Yen M, Ray J Jr, Schultz R (1995) Integrity of the first-metatarsophalangeal joint: a biomechanical analysis. Foot Ankle Int 16(6):357–362PubMedCrossRefGoogle Scholar
  62. 62.
    Frimenko RE, Lievers WB, Riley PO, Park JS, Hogan MV, Crandall JR, Kent RW (2013) Development of an injury risk function for first metatarsophalangeal joint sprains. Med Sci Sports Exerc. 45(11):2144–2150. doi:10.1249/MSS.0b013e3182994a10Google Scholar
  63. 63.
    Lievers WB, Frimenko RE, Crandall JR, Kent RW, Park JS (2012) Age, sex, causal and injury patterns in tarsometatarsal dislocations: a literature review of over 2000 cases. Foot (Edinb) 22(3):117–124. doi: 10.1016/j.foot.2012.03.003 CrossRefGoogle Scholar
  64. 64.
    de Palma L, Santucci A, Sabetta SP, Rapali S (1997) Anatomy of the Lisfranc joint complex. Foot Ankle Int 18(6):356–364PubMedCrossRefGoogle Scholar
  65. 65.
    Ouzounian TJ, Shereff MJ (1989) In vitro determination of midfoot motion. Foot Ankle 10(3):140–146PubMedCrossRefGoogle Scholar
  66. 66.
    Johnson A, Hill K, Ward J, Ficke J (2008) Anatomy of the Lisfranc ligament. Foot Ankle Spec 1(1): 19–23. doi: 10.1177/1938640007312300 PubMedCrossRefGoogle Scholar
  67. 67.
    Kura H, Luo ZP, Kitaoka HB, Smutz WP, An KN (2001) Mechanical behavior of the Lisfranc and dorsal cuneometatarsal ligaments: in vitro biomechanical study. J Orthop Trauma 15(2):107–110PubMedCrossRefGoogle Scholar
  68. 68.
    Solan MC, Moorman CT III, Miyamoto RG, Jasper LE, Belko SM (2001) Ligamentous restraints of the second tarsometatarsal joint: a biomechanical evaluation. Foot Ankle Int 22(8):637–641PubMedGoogle Scholar
  69. 69.
    Jeffreys TE (1963) Lisfranc’s fracture-dislocation: a clinical and experimental study of tarso-metatarsal dislocations and fracture-dislocations. J Bone Joint Surg 45B(3):546–551Google Scholar
  70. 70.
    Wilson DW (1972) Injuries of the tarso-metatarsal joints: etiology, classification and results of treatment. J Bone Joint Surg 54B(4):677–686Google Scholar
  71. 71.
    Wiley JJ (1971) The mechanism of tarso-metatarsal joint injuries. J Bone Joint Surg 53B(3):474–482Google Scholar
  72. 72.
    Charrois O, Béqué T, Mulier GP, Masquelet AC (1998) Luxation plantair de l’articulation tarso-métatarsienne (articulation de Lisfranc): a propos d’un cas [Lisfranc plantar fracture dislocation: a case report]. Rev Chir Orthop 84(2):197–201PubMedGoogle Scholar
  73. 73.
    Nishi H, Takao M, Uchio Y, Yamagami N (2004) Isolated plantar dislocation of the intermediate cuneiform bone: a case report. J Bone Joint Surg 86A(8): 1772–1777Google Scholar
  74. 74.
    Kadel N, Boenisch M, Tietz C, Trepman E (2005) Stability of Lisfranc joint in ballet pointe position. Foot Ankle Int 26(5):394–400PubMedGoogle Scholar
  75. 75.
    Kaar S, Femino J, Morag Y (2007) Lisfranc joint displacement following sequential ligament sectioning. J Bone Joint Surg 89A(10):2225–2232. doi: 10.2106/JBJS.F.00958 CrossRefGoogle Scholar
  76. 76.
    Smith BR, Begeman PC, Leland R, Levine RS, Yang KH, King AI (2003) A mechanism of injury to the forefoot in car crashes. In: Proceedings of the 2003 international IRCOBI conference on the biomechanics of impact, Lisbon, 25 Sept 2003Google Scholar
  77. 77.
    Smith BR, Begeman PC, Leland R, Meehan R, Levine RS, Yang KH, King AI (2005) A mechanism of injury to the forefoot in car crashes. Traffic Inj Prev 6(2):156–169. doi: 10.1080/15389580590931635 PubMedCrossRefGoogle Scholar
  78. 78.
    Frimenko RE, Lievers WB, Riley PO, Crandall JR, Kent RW (2012) A method to induce navicular‐cuneiform/cuneiform‐first metatarsal sprain in athletes. In: Proceedings of the international research council on the biomechanics of injury (IRCOBI) conference, Dublin, 12–14 Sept 2012Google Scholar
  79. 79.
    Guise ER (1976) Rotational ligamentous injuries to the ankle in football. Am J Sports Med 4(1):1–6. doi: 10.1177/036354657600400101 PubMedCrossRefGoogle Scholar
  80. 80.
    Boytim MJ, Fischer DA, Neumann L (1991) Syndesmotic ankle sprains. Am J Sports Med 19(3): 294–298. doi: 10.1177/036354659101900315 PubMedCrossRefGoogle Scholar
  81. 81.
    Nussbaum ED, Hosea TM, Sieler SD, Incremona BR, Kessler DE (2001) Prospective evaluation of syndesmotic ankle sprains without diastasis. Am J Sports Med 29(1):31–35PubMedGoogle Scholar
  82. 82.
    Hopkinson WJ, St Pierre P, Ryan JB, Wheeler JH (1990) Syndesmosis sprains of the ankle. Foot Ankle 10(6):325–330PubMedCrossRefGoogle Scholar
  83. 83.
    Close JR (1956) Some applications of the functional anatomy of the ankle joint. J Bone Joint Surg 38A(4):761–781Google Scholar
  84. 84.
    Rasmussen O, Tovborg-Jensen I, Boe S (1982) Distal tibio-fibular ligaments: analysis of function. Acta Orthop Scand 53(4):681–686. doi:10.3109/ 17453678208992276PubMedCrossRefGoogle Scholar
  85. 85.
    Xenos JS, Hopkinson WJ, Mulligan ME, Olson EJ, Popovic NA (1995) The tibiofibular syndesmosis: evaluation of the ligamentous structures, methods of fixation, and radiographic assessment. J Bone Joint Surg 77A(6):847–856Google Scholar
  86. 86.
    Wei F, Villwock MR, Meyer EG, Powell JW, Haut RC (2010) A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver. J Biomech Eng 132(9):091001. doi: 10.1115/1.4002025 PubMedCrossRefGoogle Scholar
  87. 87.
    Wei F, Hunley SC, Powell JW, Haut RC (2011) Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation. Ann Biomed Eng 39(2):756–765. doi: 10.1007/s10439-010-0234-9 PubMedCrossRefGoogle Scholar
  88. 88.
    Wei F, Post JM, Braman JE, Meyer EG, Powell JW, Haut RC (2012) Eversion during external rotation of the human cadaver foot produces high ankle sprains. J Orthop Res 30(9):1423–1429. doi: 10.1002/jor.22085 PubMedCrossRefGoogle Scholar
  89. 89.
    Meyer EG, Wei F, Button K, Powell JW, Haut RC (2012) Determination of ligament strain during high ankle sprains due to excessive external foot rotation in sports. In: Proceedings of the international research council on the biomechanics of injury (IRCOBI) conference, Dublin, 12–14 Sept 2012Google Scholar
  90. 90.
    NATO Science and Technology Centres (2007) Test methodology for protection of vehicle occupants against anti-vehicular landmine effects. ISBN 978-92-837-0068-5.
  91. 91.
    Bass CR, Hall GW, Crandall JR, Pilkey WD (1996) The influence of padding and shoes on the dynamic response of dummy lower extremities. SAE technical papers series, DetroitGoogle Scholar
  92. 92.
    Harris RM, Griffin LV, Hayda RA, Rountree MS, Bryant RG, Rossiter ND et al (1999) The effects of antipersonnel blast mines of the lower extremity. In: IRCOBI conference proceedings, Sitges, pp 457–467Google Scholar
  93. 93.
    Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405PubMedCrossRefGoogle Scholar
  94. 94.
    Dionne JP, Makris A, Nerenberg J (2001) Blast evaluation of spider boot foot protection system employing surrogates and biological specimens. In: IRCOBI conference proceedings. Isle of Man, UKGoogle Scholar
  95. 95.
    Makris A, Islam S (2000) Performance tests of ‘spider boot’ for demining. World EOD Gazette, pp 33–44Google Scholar
  96. 96.
    Chaloner EJ, McMaster J, Hinsley DE (2002) Principles and problems underlying testing the effectiveness of blast protective footwear. J R Army Med Corps 148(1):38–43PubMedCrossRefGoogle Scholar
  97. 97.
    Bass CR, Folk B, Salzar RS, Davis M, Donnellan L, Harris R, Rountree M, Gardner M, Harcke T, Rouse E, Oliver W, Sanderson E, Waclawik S, Holthe M, Hauck B (2004) Development of a test methodology to evaluate mine protective footwear. In: Proceedings of the Personal Armor Systems Symposium (PASS), The HagueGoogle Scholar
  98. 98.
    Wolff K, Prusa A, Wibmer A, Rankl P, Firbas W, Teufelsbauer H (2005) Effect of body armor on simulated landmine blasts to cadaveric legs. J Trauma 59(1):202–208PubMedCrossRefGoogle Scholar
  99. 99.
    U.S. Army Institute of Surgical Research (2000) Final report of the Lower Extremity Assessment Program (LEAP 99–2). Fort Sam Houston, TXGoogle Scholar
  100. 100.
    Funk, JR, Tourret, L, Crandall, JR, Pilkey, WD, McMaster, J, Khaewpong, N, Eppinger, R. (2001) The Effect of Active Muscle Tension on the Axial Injury Tolerance of the Lower Extremity. Paper 237, Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Amsterdam, The NetherlandsGoogle Scholar
  101. 101.
    Vasquez K, Logsdon K, Shivers B, Chancey C (2011) Medical injury data 10 Nov 2011. Unclassified// Public ReleaseGoogle Scholar
  102. 102.
    Schueler F, Mattern R, Zeidler F, Scheunert D (1995) Injuries of the lower legs-foot, ankle joint, tibia. Mechanisms, tolerance limits, injury—criteria evaluation of a recent biomechanics experiment series (impact tests with a pneumatic biomechanic impactor). In: Proceedings of the international research council on the biomechanics of impact, BrunnenGoogle Scholar
  103. 103.
    McKay BJ, Bir CA (2009) Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 2009 Nov;53:229–249Google Scholar
  104. 104.
    Yoganandan, N., Pintar, F., Boynton, M., Begeman, P. et al., Dynamic Axial Tolerance of the Human Foot-Ankle Complex, SAE Technical Paper 962426, 1996, doi: 10.4271/962426
  105. 105.
    Kitagawa Y, Ichikawa H, Pal C, King A (1998) Lower leg injuries caused by dynamic axial loading and muscle tensing. In: Proceedings of the international technical conference on the Enhanced Safety of Vehicles (ESV). Windsor, Ontario, CanadaGoogle Scholar
  106. 106.
    Quenneville C, Fraser G, Dunning C (2010) Development of an apparatus to produce fractures from short duration high impulse loading with an application in the lower leg. J Biomech Eng 132(1): 014502. doi: 10.1115/1.4000084Google Scholar
  107. 107.
    Ramasamy A, Masouros S, Newell N, Hill AM, Proud WG, Brown KA et al (2011) In vehicle extremity injuries from improvised explosive devices: current and future foci. Philos Trans Roy Soc Biomech 366:160–170CrossRefGoogle Scholar
  108. 108.
    Otte D, von Rheinbaben H, Zwipp H (1992) Biomechanics of injuries to the foot and ankle joint of car drivers and improvements for an optimal car floor development. In: Stapp Car Crash Conference proceedings. Seattle, WAGoogle Scholar
  109. 109.
    Crandall JR, Martin PG, Kuhlmann T, Klopp GS, Sieveka EM, Pilkey WD et al (1995) The influence of footwell intrusion on lower extremity response and injury in frontal crashes. Annual proceedings of the Association for Advancement of Automotive Medicine. Chicago, IL, pp 269–286Google Scholar
  110. 110.
    Krueger HJ, Heuser G, Kraemer B, Schmitz A (1995) Proceedings of the fourteenth international technical conference on enhanced safety of vehicles. Munich, pp 528–534Google Scholar
  111. 111.
    Funk, JR, Tourret, L, Crandall, JR. (2000) Estimation of Fibula Load-Sharing During Dynamic Axial Loading of the Lower Extremity. Proceedings of the 24th Annual Meeting of the American Society of Biomechanics, Chicago, ILGoogle Scholar
  112. 112.
    Rudd RW, Crandall JR, Hjerpe E, Haland Y (2001) Evaluation of lower limb injury mitigation from inflatable carpet in sled tests with intrusion using the THOR Lx. In: Proceedings of the 17th international technical conference on the enhanced safety of vehicles. Amsterdam, The Netherlands, pp 4–7Google Scholar
  113. 113.
    Crandall JR, Kuppa SM, Hall GW, Pilkey WD, Hurwitz SR (1998) Injury mechanisms and criteria for the human foot and ankle under axial impacts to the foot. Int J Crashworthiness 3(2):147–162CrossRefGoogle Scholar
  114. 114.
    Schreiber P, Crandall JR, Dekel E, Hall GW, Pilkey WD (1995) The effects of lower extremity boundary conditions on ankle response during joint rotation tests. In: Proceedings of the 23rd international workshop on human subjects for biomechanical research. National Highway Traffic and Safety Administration, US DOTGoogle Scholar
  115. 115.
    Funk, JR, Crandall, JR. (2004) Calculation of Long Bone Loading Using Strain Gauges. Proceedings of the 32nd International Workshop on Human Subjects for Biomechanical Research, National Highway Traffic Safety Administration, U.S. D.O.T., Nashville, TNGoogle Scholar
  116. 116.
    Ivarsson JB, Genovese D, Crandall JR, Bolton JR, Untaroiu CD, Bose D (2009) The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash J. Savannah, GA 53:251Google Scholar
  117. 117.
    Wang JJ, Bird R, Swinton B, Krstic A (2001) Protection of lower limbs against floor impact in army vehicles experiencing landmine explosion. J Battlefield Technol 4(3):8–12Google Scholar
  118. 118.
    Ramasamy A, Hill AM, Hepper AE, Bull AM, Clasper JC (2009) Blast mines: a background for clinicians on physics. Injury mechanisms and vehicle protection. J R Army Med Corps 155: 258–264PubMedCrossRefGoogle Scholar
  119. 119.
    Bir C, Barbir A, Dosquett F, Wilhelm M, van der Horst M, Wolfe G (2008) Validation of lower limb surrogates as injury assessment tools in floor impacts due to anti-vehicular land mines. Mil Med 173(12): 1180–1184PubMedGoogle Scholar
  120. 120.
    Pandelani T, Reinecke D, Phillippens M, Dosquet F, Beetge F (2010) The practical evaluation of the MIl-Lx lower leg when subjected to simulated vehicle under belly blast load conditions. Personal Armour Systems Symposium, Quebec City, Quebec, CanadaGoogle Scholar
  121. 121.
    Quenneville CE, Dunning CE (2012) Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading. Traffic Inj Prev. 2012;13(1):81–85. doi: 10.1080/15389588.2011.623251Google Scholar
  122. 122.
    Roberts, D, Donnelly, B, Severin, C, Medige, J (1993) Injury mechanisms and tolerance of the human ankle joint, Centers for Disease Control, Atlanta, GAGoogle Scholar
  123. 123.
    Alvarez JG (2011) Injuries of concern & medical research plan for Warrior Injury Assessment Manikin Project (WIAMan). U.S. Army Medical Research and Materiel CommandGoogle Scholar
  124. 124.
    Tegtmeyer M (2011) The WIAMan development program: objectives and rationale. Army Research Laboratory, Aberdeen, MDGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Robert S. Salzar
    • 1
    Email author
  • W. Brent Lievers
    • 2
  • Ann M. Bailey
    • 1
  • Jeff R. Crandall
    • 1
  1. 1.Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Bharti School of EngineeringLaurentian UniversitySudburyCanada

Personalised recommendations