Advertisement

Virtual Surgical Planning and Patient Specific Surgical Templates and Precontoured Bone Plates

  • Alex M. Greenberg
Chapter

Abstract

Virtual Surgical Planning (VSP) based on CT data has become widely used for orthognathic surgery, distraction osteogenesis, cancer reconstruction, trauma, and custom bone plate fabrication. Software planning utilizing 3D images provides surgeons with unparalleled visual tools for the understanding of patient’s deformities, pathology, and defects for surgical treatment. Surgeons can visualize and plan precise segmented images of cut bone segments and their repositioning, the creation of sectioned bone grafts, placement of dental implants, and develop facial and cranial implants.

Keywords

Digital Patient specific Custom Implants Orthognathic Malocclusion Occlusal splint Cutting guides Cancer Stereolithographic Prebend Contouring Cranioplasty 

References

  1. 1.
    Swennen GR, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J Oral Maxillofac Surg. 2009;67(10):2080–92.CrossRefGoogle Scholar
  2. 2.
    Lin HH, Chang HW, Wang CH, Kim SG, Lo LJ. Three-dimensional computer-assisted orthognathic surgery: experience of 37 patients. Ann Plast Surg. 2015;74(Suppl 2):S118–26.CrossRefGoogle Scholar
  3. 3.
    Resnick CM, Inverso G, Wrzosek M, Padwa BL, Kaban LB, Peacock ZS. Is there a difference in cost between standard and virtual surgical planning for orthognathic surgery? J Oral Maxillofac Surg. 2016;74(9):1827–33.CrossRefGoogle Scholar
  4. 4.
    Wrzosek MK, Peacock ZS, Laviv A, Goldwaser BR, Ortiz R, Resnick CM, Troulis MJ, Kaban LB. Comparison of time required for traditional versus virtual orthognathic surgery treatment planning. Int J Oral Maxillofac Surg. 2016;45(9):1065–9.CrossRefGoogle Scholar
  5. 5.
    Hatamleh M, Turner C, Bhamrah G, Mack G, Osher J. Improved virtual planning for bimaxillary orthognathic surgery. J Craniofac Surg. 2016;27(6):e568–73.CrossRefGoogle Scholar
  6. 6.
    Brunso J, Franco M, Constantinescu T, Barbier L, Santamaría JA, Alvarez J. Custom-machined miniplates and bone-supported guides for orthognathic surgery: a new surgical procedure. J Oral Maxillofac Surg. 2016;74(5):1061.e1.CrossRefGoogle Scholar
  7. 7.
    Schouman T, Rouch P, Imholz B, Fasel J, Courvoisier D, Scolozzi P. Accuracy evaluation of CAD/CAM generated splints in orthognathic surgery: a cadaveric study. Head Face Med. 2015;11:24.CrossRefGoogle Scholar
  8. 8.
    Burstone CJ, James RB, Legan H, Murphy GA, Norton LA. Cephalometrics for orthognathic surgery. J Oral Surg. 1978;36(4):269–77.PubMedGoogle Scholar
  9. 9.
    Steinbacher DM. Three-dimensional analysis and surgical planning in craniomaxillofacial surgery. J Oral Maxillofac Surg. 2015;73(12 Suppl):S40–56.CrossRefGoogle Scholar
  10. 10.
    Seeberger R, Davids R, Kater W, Thiele OC. Use of stereolithographic drilling and cutting guides in bilateral mandibular distraction. J Craniofac Surg. 2011;22(6):2031–5.CrossRefGoogle Scholar
  11. 11.
    Robiony M, Salvo I, Costa F, Zerman N, Bazzocchi M, Toso F, Bandera C, Filippi S, Felice M, Politi M. Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg. 2007;65(6):1198–208.CrossRefGoogle Scholar
  12. 12.
    Varol A, Basa S. The role of computer-aided 3D surgery and stereolithographic modelling for vector orientation in premaxillary and trans-sinusoidal maxillary distraction osteogenesis. Int J Med Robot. 2009;5(2):198–206.CrossRefGoogle Scholar
  13. 13.
    Yeshwant K, Seldin EB, Gateno J, Everett P, White CL, Kikinis R, Kaban LB, Troulis MJ. Analysis of skeletal movements in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2005;63(3):335–40.CrossRefGoogle Scholar
  14. 14.
    Gateno J, Teichgraeber JF, Xia JJ. Three-dimensional surgical planning for maxillary and midface distraction osteogenesis. J Craniofac Surg. 2003;14(6):833–9.CrossRefGoogle Scholar
  15. 15.
    Wang YY, Zhang HQ, Fan S, Zhang DM, Huang ZQ, Chen WL, Ye JT, Li JS. Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery. Int J Oral Maxillofac Surg. 2016;45(11):1400–5.CrossRefGoogle Scholar
  16. 16.
    Mottini M, Seyed Jafari SM, Shafighi M, Schaller B. New approach for virtual surgical planning and mandibular reconstruction using a fibula free flap. Oral Oncol. 2016;59:e6–9.CrossRefGoogle Scholar
  17. 17.
    Wang YY, Fan S, Zhang HQ, Lin ZY, Ye JT, Li JS. Virtual surgical planning in precise maxillary reconstruction with vascularized fibular graft after tumor ablation. J Oral Maxillofac Surg. 2016;74(6):1255–64.CrossRefGoogle Scholar
  18. 18.
    Cornelius CP, Giessler GA, Wilde F, Metzger MC, Mast G, Probst FA. Iterations of computer- and template assisted mandibular or maxillary reconstruction with free flaps containing the lateral scapular border--evolution of a biplanar plug-on cutting guide. J Craniomaxillofac Surg. 2016;44(3):229–41.CrossRefGoogle Scholar
  19. 19.
    Tarsitano A, Del Corso G, Ciocca L, Scotti R, Marchetti C. Mandibular reconstructions using computer-aided design/computer-aided manufacturing: a systematic review of a defect-based reconstructive algorithm. J Craniomaxillofac Surg. 2015;43(9):1785–91.CrossRefGoogle Scholar
  20. 20.
    Zweifel DF, Simon C, Hoarau R, Pasche P, Broome M. Are virtual planning and guided surgery for head and neck reconstruction economically viable? J Oral Maxillofac Surg. 2015;73(1):170–5.CrossRefGoogle Scholar
  21. 21.
    Thor A. Preoperative planning of virtual osteotomies followed by fabrication of patient specific reconstruction plate for secondary correction and fixation of displaced bilateral mandibular body fracture. Craniomaxillofac Trauma Reconstr. 2016;9(2):188–94.CrossRefGoogle Scholar
  22. 22.
    Tofigh M, Carrao V, Greenberg AM. Virtual Surgical Planning for Orthognathic Surgery. In: Greenberg AM (ed.). Digital Technologies in Craniomaxillofacial Surgery. Springer Verlog: New York, New York; 2018. pp. 154–5.Google Scholar
  23. 23.
    Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):118.CrossRefGoogle Scholar
  24. 24.
    El Halabi F, Rodriguez JF, Rebolledo L, Hurtós E, Doblaré M. Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. J Mech Behav Biomed Mater. 2011;4(8):1819–32.CrossRefGoogle Scholar
  25. 25.
    Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alex M. Greenberg
    • 1
    • 2
  1. 1.Division of Oral and Maxillofacial SurgeryColumbia University College of Dental Medicine and The New York Presbyterian HospitalNew YorkUSA
  2. 2.Division of Oral and Maxillofacial SurgeryDepartment of Otolaryngology, Head and Neck Surgery, The Mount Sinai HospitalNew YorkUSA

Personalised recommendations