Drug Addiction

  • Xiaohui Wang
  • Thomas A. Cochran
  • Mark R. Hutchinson
  • Hang Yin
  • Linda R. Watkins


Drug addiction is a pervasive worldwide problem characterized by compulsive drug use that continues despite negative consequences and treatment attempts. Historically, the biological basis of drug addiction has focused principally on neuronal activity. However, despite their pivotal role in the underlying pathology of drug addiction, neurons are not the only central nervous system (CNS) component involved. The role of additional cell types, especially the CNS immunocompetent microglial cells, in the development of tolerance and related neuroplastic changes during drug taking, addiction, and withdrawal is also emerging. Within this perspective, this chapter reviews the roles of microglial cells in several aspects of drug addiction and its behavioural consequences, including reward, tolerance, dependence, and withdrawal. The cellular and molecular mechanisms which are particularly recruited will be emphasized. Lastly, we will also summarize the development of pharmacological modulators of microglial activation that offer novel treatment strategies and highlight the need to better understand the roles of microglia in the context of drug addiction.


Microglia Inflammation Drug addiction Toll-like receptor 4 NMDA receptors Purinergic signalling Cytokines Opioids Ethanol 


  1. Agrawal RG, Hewetson A, George CM et al (2011) Minocycline reduces ethanol drinking. Brain Behav Immun 25(Suppl 1):S165–S169PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM et al (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295PubMedCrossRefGoogle Scholar
  3. Bastos LF, de Oliveira AC, Watkins LR et al (2012) Tetracyclines and pain. Naunyn Schmiedebergs Arch Pharmacol 385:225–241PubMedCrossRefGoogle Scholar
  4. Beardsley PM, Shelton KL, Hendrick E et al (2010) The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol 637:102–108PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beattie EC, Stellwagen D, Morishita W et al (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285PubMedCrossRefGoogle Scholar
  6. Belujon P, Grace AA (2011) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216:114–121PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bernardi RE, Lattal KM, Berger SP (2006) Postretrieval propranolol disrupts a cocaine conditioned place preference. Neuroreport 17:1443–1447PubMedCrossRefGoogle Scholar
  8. Brundula V, Rewcastle NB, Metz LM et al (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308PubMedCrossRefGoogle Scholar
  9. Bsibsi M, Ravid R, Gveric D et al (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  10. Burns LH, Wang HY (2010) PTI-609: a novel analgesic that binds filamin A to control opioid signaling. Recent Pat CNS Drug Discov 5:210–220PubMedCrossRefGoogle Scholar
  11. Ciraulo DA, Sarid-Segal O, Knapp CM et al (2005) Efficacy screening trials of paroxetine, pentoxifylline, riluzole, pramipexole and venlafaxine in cocaine dependence. Addiction 100(Suppl 1):12–22PubMedCrossRefGoogle Scholar
  12. Coller JK, Hutchinson MR (2012) Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 134:219–245PubMedCrossRefGoogle Scholar
  13. Cooper ZD, Truong YN, Shi YG et al (2008) Morphine deprivation increases self-administration of the fast- and short-acting mu-opioid receptor agonist remifentanil in the rat. J Pharmacol Exp Ther 326:920–929PubMedCrossRefPubMedCentralGoogle Scholar
  14. De A, Krueger JM, Simasko SM (2003) Tumor necrosis factor alpha increases cytosolic calcium responses to AMPA and KCl in primary cultures of rat hippocampal neurons. Brain Res 981:133–142PubMedCrossRefGoogle Scholar
  15. Diogenes A, Ferraz CC, Akopian AN et al (2011) LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 90:759–764PubMedCrossRefGoogle Scholar
  16. Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:49PubMedPubMedCentralGoogle Scholar
  17. Dutta K, Mishra MK, Nazmi A et al (2010) Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology 215:884–893PubMedCrossRefGoogle Scholar
  18. Espey MG, Chernyshev ON, Reinhard JF Jr et al (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8:431–434PubMedCrossRefGoogle Scholar
  19. Fan Y, Niu H, Rizak JD et al (2012) Combined action of MK-801 and ceftriaxone impairs the acquisition and reinstatement of morphine-induced conditioned place preference, and delays morphine extinction in rats. Neurosci Bull 28:567–576PubMedCrossRefGoogle Scholar
  20. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183:4733–4744PubMedCrossRefGoogle Scholar
  21. Fernandez-Lizarbe S, Montesinos J, Guerri C (2013) Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J Neurochem 126:261–273PubMedCrossRefGoogle Scholar
  22. Ferraz CC, Henry MA, Hargreaves KM et al (2011) Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicin-sensitive nociceptors. J Endod 37:45–48PubMedCrossRefPubMedCentralGoogle Scholar
  23. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652PubMedCrossRefPubMedCentralGoogle Scholar
  24. Graeber MB (2010) Changing face of microglia. Science 330:783–788PubMedCrossRefGoogle Scholar
  25. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120PubMedCrossRefGoogle Scholar
  26. Guo RX, Zhang M, Liu W et al (2009) NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett 467:95–99PubMedCrossRefGoogle Scholar
  27. Habibi-Asl B, Hassanzadeh K, Charkhpour M (2009) Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg 109:936–942PubMedCrossRefGoogle Scholar
  28. Hameed H, Hameed M, Christo PJ (2010) The effect of morphine on glial cells as a potential therapeutic target for pharmacological development of analgesic drugs. Curr Pain Headache Rep 14:96–104PubMedCrossRefGoogle Scholar
  29. He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  30. Herman JP, Mueller NK (2006) Role of the ventral subiculum in stress integration. Behav Brain Res 174:215–224PubMedCrossRefGoogle Scholar
  31. Hermann GE, Rogers RC, Bresnahan JC et al (2001) Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis 8:590–599PubMedCrossRefGoogle Scholar
  32. Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29:998–1005PubMedCrossRefPubMedCentralGoogle Scholar
  33. Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150:401–413PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hutchinson MR, Bland ST, Johnson KW et al (2007) Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. Scientific World Journal 7:98–111PubMedCrossRefGoogle Scholar
  35. Hutchinson MR, Zhang Y, Brown K et al (2008) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28:20–29PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hutchinson MR, Lewis SS, Coats BD et al (2009) Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 23:240–250PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hutchinson MR, Lewis SS, Coats BD et al (2010a) Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 167:880–893PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hutchinson MR, Zhang Y, Shridhar M et al (2010b) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hutchinson MR, Shavit Y, Grace PM et al (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hutchinson MR, Northcutt AL, Hiranita T et al (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32:11187–11200PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRefGoogle Scholar
  42. Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41PubMedCrossRefGoogle Scholar
  43. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226PubMedCrossRefGoogle Scholar
  44. Ji K, Akgul G, Wollmuth LP et al (2013) Microglia actively regulate the number of functional synapses. PLoS One 8:e56293PubMedCrossRefPubMedCentralGoogle Scholar
  45. Juni A, Klein G, Pintar JE et al (2007) Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience 147:439–444PubMedCrossRefGoogle Scholar
  46. Kaczmarek-Hajek K, Lorinczi E, Hausmann R et al (2012) Molecular and functional properties of P2X receptors–recent progress and persisting challenges. Purinergic Signal 8:375–417PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kaindl AM, Degos V, Peineau S et al (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549PubMedCrossRefGoogle Scholar
  48. Kampman KM, Volpicelli JR, Mulvaney F et al (2001) Effectiveness of propranolol for cocaine dependence treatment may depend on cocaine withdrawal symptom severity. Drug Alcohol Depend 63:69–78PubMedCrossRefGoogle Scholar
  49. Kest B, Mogil JS, Shamgar BE et al (1993) The NMDA receptor antagonist MK-801 protects against the development of morphine tolerance after intrathecal administration. Proc West Pharmacol Soc 36:307–310PubMedGoogle Scholar
  50. Kettenmann H, Hanisch UK, Noda M et al (2011) Physiology of microglia. Physiol Rev 91:461–553PubMedCrossRefGoogle Scholar
  51. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18PubMedCrossRefGoogle Scholar
  52. Kierdorf K, Erny D, Goldmann T et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280PubMedCrossRefGoogle Scholar
  53. Koob GF (2009) Brain stress systems in the amygdala and addiction. Brain Res 1293:61–75PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kovacs KJ (2012) Microglia and drug-induced plasticity in reward-related neuronal circuits. Front Mol Neurosci 5:74PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ledeboer A, Hutchinson MR, Watkins LR et al (2007) Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin Investig Drugs 16:935–950PubMedCrossRefGoogle Scholar
  56. Lehnardt S, Massillon L, Follett P et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lewis SS, Hutchinson MR, Zhang Y et al (2013) Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 30:24–32PubMedCrossRefPubMedCentralGoogle Scholar
  58. Li Y, Ji A, Schäfer MK (2002) Toll-like receptor 4 is expressed by peptidergic presumed nociceptive neurons in rat dorsal root ganglion. Soc Neurosci Abstr 46:19Google Scholar
  59. Li YQ, Xue YX, He YY et al (2011) Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory. J Neurosci 31:5436–5446PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lodge DJ, Grace AA (2008) Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci 28:7876–7882PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911–923PubMedCrossRefGoogle Scholar
  62. McClain JA, Morris SA, Deeny MA et al (2011) Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 25(Suppl 1):S120–S128PubMedCrossRefPubMedCentralGoogle Scholar
  63. Substance Abuse and Mental Health Services Administration (2012) Results from the 2011 National Survey on Drug Use and Health: Summary of National Findings, NSDUH Series H-44, HHS Publication No. (SMA) 12-4713. Rockville, MDGoogle Scholar
  64. Miguel-Hidalgo JJ (2009) The role of glial cells in drug abuse. Curr Drug Abuse Rev 2:72–82PubMedCrossRefGoogle Scholar
  65. Miguel-Hidalgo JJ, Wei J, Andrew M et al (2002) Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Biol Psychiatry 52:1121–1133PubMedCrossRefPubMedCentralGoogle Scholar
  66. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36PubMedCrossRefPubMedCentralGoogle Scholar
  67. Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56PubMedCrossRefPubMedCentralGoogle Scholar
  68. Neumann H, Wekerle H (2013) Brain microglia: watchdogs with pedigree. Nat Neurosci 16:253–255PubMedCrossRefGoogle Scholar
  69. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  70. Pandey SC (2012) TLR4-MyD88 signalling: a molecular target for alcohol actions. Br J Pharmacol 165:1316–1318PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pascual M, Balino P, Alfonso-Loeches S et al (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91PubMedCrossRefGoogle Scholar
  72. Pascual O, Ben Achour S, Rostaing P et al (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109:E197–E205PubMedCrossRefPubMedCentralGoogle Scholar
  73. Reeve AJ, Patel S, Fox A et al (2000) Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 4:247–257PubMedCrossRefGoogle Scholar
  74. Saladin ME, Gray KM, McRae-Clark AL et al (2013) A double blind, placebo-controlled study of the effects of post-retrieval propranolol on reconsolidation of memory for craving and cue reactivity in cocaine dependent humans. Psychopharmacology (Berl) 226:721–737CrossRefGoogle Scholar
  75. Schwarz JM, Hutchinson MR, Bilbo SD (2011) Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci 31:17835–17847PubMedCrossRefPubMedCentralGoogle Scholar
  76. Shu H, Hayashida M, Huang W et al (2008) The comparison of effects of processed Aconiti tuber, U50488H and MK-801 on the antinociceptive tolerance to morphine. J Ethnopharmacol 117:158–165PubMedCrossRefGoogle Scholar
  77. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158:343–359CrossRefGoogle Scholar
  78. Snider SE, Vunck SA, van den Oord EJ et al (2012) The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur J Pharmacol 679:75–80PubMedCrossRefPubMedCentralGoogle Scholar
  79. Snider SE, Hendrick ES, Beardsley PM (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol 701:124–130PubMedCrossRefPubMedCentralGoogle Scholar
  80. Stellwagen D, Beattie EC, Seo JY et al (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228PubMedCrossRefGoogle Scholar
  81. Szeto GL, Pomerantz JL, Graham DR et al (2011) Minocycline suppresses activation of nuclear factor of activated T cells 1 (NFAT1) in human CD4+ T cells. J Biol Chem 286:11275–11282PubMedCrossRefPubMedCentralGoogle Scholar
  82. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  83. Tanaka KF, Kashima H, Suzuki H et al (2002) Existence of functional beta1- and beta2-adrenergic receptors on microglia. J Neurosci Res 70:232–237PubMedCrossRefGoogle Scholar
  84. Thomas DM, Kuhn DM (2005) MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 1050:190–198PubMedCrossRefGoogle Scholar
  85. Tremblay ME, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4:220–222PubMedCrossRefPubMedCentralGoogle Scholar
  86. Tremblay ME, Stevens B, Sierra A et al (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069PubMedCrossRefGoogle Scholar
  87. Tsai RY, Chou KY, Shen CH et al (2012) Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats. Anesth Analg 115:944–952PubMedCrossRefGoogle Scholar
  88. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462PubMedCrossRefGoogle Scholar
  89. Ueda H, Ueda M (2009) Mechanisms underlying morphine analgesic tolerance and dependence. Front Biosci 14:5260–5272CrossRefGoogle Scholar
  90. Wang J, Li J, Sheng X et al (2010) Beta-adrenoceptor mediated surgery-induced production of pro-inflammatory cytokines in rat microglia cells. J Neuroimmunol 223:77–83PubMedCrossRefGoogle Scholar
  91. Wang X, Loram LC, Ramos K et al (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 109:6325–6330PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wang X, Smith C, Yin H (2013) Targeting Toll-like receptors with small molecule agents. Chem Soc Rev 42:4859–4866PubMedCrossRefPubMedCentralGoogle Scholar
  93. Watkins LR, Hutchinson MR, Johnston IN et al (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–669PubMedCrossRefGoogle Scholar
  94. Watkins LR, Hutchinson MR, Rice KC et al (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wu HE, Sun HS, Cheng CW et al (2006) dextro-Naloxone or levo-naloxone reverses the attenuation of morphine antinociception induced by lipopolysaccharide in the mouse spinal cord via a non-opioid mechanism. Eur J Neurosci 24:2575–2580PubMedCrossRefGoogle Scholar
  96. Wu HE, Hong JS, Tseng LF (2007) Stereoselective action of (+)-morphine over (−)-morphine in attenuating the (−)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. Eur J Pharmacol 571:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wu Y, Lousberg EL, Moldenhauer LM et al (2012) Inhibiting the TLR4-MyD88 signalling cascade by genetic or pharmacological strategies reduces acute alcohol-induced sedation and motor impairment in mice. Br J Pharmacol 165:1319–1329PubMedCrossRefPubMedCentralGoogle Scholar
  98. Yoshikawa M, Suzumura A, Tamaru T et al (1999) Effects of phosphodiesterase inhibitors on cytokine production by microglia. Mult Scler 5:126–133PubMedCrossRefGoogle Scholar
  99. Youn DH, Wang H, Jeong SJ (2008) Exogenous tumor necrosis factor-alpha rapidly alters synaptic and sensory transmission in the adult rat spinal cord dorsal horn. J Neurosci Res 86:2867–2875PubMedCrossRefGoogle Scholar
  100. Zhang L, Kitaichi K, Fujimoto Y et al (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 30:1381–1393PubMedCrossRefGoogle Scholar
  101. Zhang XQ, Cui Y, Chen Y et al (2012) Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav Immun 26:318–325PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaohui Wang
    • 1
    • 2
  • Thomas A. Cochran
    • 3
  • Mark R. Hutchinson
    • 4
  • Hang Yin
    • 5
  • Linda R. Watkins
    • 3
  1. 1.Chemical Biology Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Department of Psychology and the Center for Neuroscience, Department of Chemistry and Biochemistry and BioFrontiers InstituteUniversity of Colorado at BoulderBoulderUSA
  3. 3.Department of Psychology and the Center for NeuroscienceUniversity of Colorado at BoulderBoulderUSA
  4. 4.Discipline of Physiology, School of Medical SciencesUniversity of AdelaideAdelaideAustralia
  5. 5.Department of Chemistry and Biochemistry and BioFrontiers InstituteUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations