Advertisement

Phagocytosis

  • Andrea J. WolfEmail author
  • David M. Underhill
Chapter

Abstract

Phagocytosis is the process by which cells engulf large (typically ≥0.5 μm) particles, microbes, cellular debris, or portions of the extracellular environment. Phagocytosis, literally “cell eating”, was originally described by Ilya Mechnikov over a hundred years ago, for which he received the Nobel prize in 1908 together with Paul Ehrlich. During phagocytosis, a cell engulfs a target with its plasma membrane to form a new intracellular compartment called the phagosome, which acidifies and fills with proteolytic enzymes to degrade or kill the target. The origins of phagocytosis can be traced back to requirements for nutrient acquisition in single-celled organisms such as amoebae. These single-celled organisms internalized and degraded other microbes in order to obtain the basic building blocks of life: carbohydrates, lipids, and amino acids. As multicellular organisms evolved specific organs to compartmentalize nutrient degradation, phagocytosis of particulate matter by individual cells became restricted largely (but not exclusively) to specialized cells within the immune system including macrophages, dendritic cells, and neutrophils. These phagocytes use the process of phagocytosis to survey their microenvironments for danger and to kill potentially harmful microbes. It is also necessary for clearance of apoptotic cells and tissue debris as part of normal tissue homeostasis and repair.

Keywords

Actin Polymerization Scavenger Receptor Leukocyte Adhesion Deficiency Particle Internalization Phagosome Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abram CL, Lowell CA (2007) The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE 2007:re2PubMedCrossRefGoogle Scholar
  2. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89PubMedCrossRefGoogle Scholar
  3. Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI (1994) Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med 179:601–608PubMedCrossRefGoogle Scholar
  4. Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260PubMedCrossRefGoogle Scholar
  5. Bakema JE, van Egmond M (2011) The human immunoglobulin A Fc receptor FcalphaRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 4:612–624PubMedCrossRefGoogle Scholar
  6. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674PubMedGoogle Scholar
  7. Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patterson AP, Eggerman TL (2008) Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol 181:7147–7156PubMedCentralPubMedCrossRefGoogle Scholar
  8. Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856PubMedGoogle Scholar
  9. Billmann-Born S, Lipinski S, Bock J, Till A, Rosenstiel P, Schreiber S (2010) The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 90:593–602PubMedCrossRefGoogle Scholar
  10. Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440:808–812PubMedCrossRefGoogle Scholar
  11. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bowdish DM, Gordon S (2009) Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 227:19–31PubMedCrossRefGoogle Scholar
  13. Bunting M, Harris ES, McIntyre TM, Prescott SM, Zimmerman GA (2002) Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr Opin Hematol 9:30–35PubMedCrossRefGoogle Scholar
  14. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934PubMedCentralPubMedCrossRefGoogle Scholar
  15. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821PubMedCentralPubMedCrossRefGoogle Scholar
  16. Charriere GM, Ip WE, Dejardin S, Boyer L, Sokolovska A, Cappillino MP, Cherayil BJ, Podolsky DK, Kobayashi KS, Silverman N, Lacy-Hulbert A, Stuart LM (2010) Identification of Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated muramyl dipeptide transporters. J Biol Chem 285:20147–20154PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247PubMedCrossRefGoogle Scholar
  18. Doshi N, Mitragotri S (2010) Macrophages recognize size and shape of their targets. PLoS One 5:e10051PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ezekowitz RA, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172:1785–1794PubMedCrossRefGoogle Scholar
  20. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890–898PubMedCentralPubMedCrossRefGoogle Scholar
  21. Foster TJ (2005) Immune evasion by Staphylococci. Nat Rev Microbiol 3:948–958PubMedCrossRefGoogle Scholar
  22. Garcia-Rodas R, Zaragoza O (2012) Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol 64:147–161PubMedCrossRefGoogle Scholar
  23. Goodridge HS, Underhill DM, Touret N (2012) Mechanisms of Fc receptor and dectin-1 activation for phagocytosis. Traffic 13:1062–1071PubMedCrossRefGoogle Scholar
  24. Greaves DR, Gordon S (2009) The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res 50(Suppl):S282–S286PubMedCentralPubMedGoogle Scholar
  25. Griffin FM Jr, Silverstein SC (1974) Segmental response of the macrophage plasma membrane to a phagocytic stimulus. J Exp Med 139:323–336PubMedCentralPubMedCrossRefGoogle Scholar
  26. Griffin FM Jr, Griffin JA, Leider JE, Silverstein SC (1975) Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142:1263–1282PubMedCrossRefGoogle Scholar
  27. Griffin FM Jr, Griffin JA, Silverstein SC (1976) Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med 144:788–809PubMedCrossRefGoogle Scholar
  28. Griffiths G (2004) On phagosome individuality and membrane signalling networks. Trends Cell Biol 14:343–351PubMedCrossRefGoogle Scholar
  29. Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822PubMedCentralPubMedCrossRefGoogle Scholar
  30. Henry RM, Hoppe AD, Joshi N, Swanson JA (2004) The uniformity of phagosome maturation in macrophages. J Cell Biol 164:185–194PubMedCentralPubMedCrossRefGoogle Scholar
  31. Herre J, Marshall ASJ, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis e Sousa C, Gordon S, Brown GD (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045PubMedCrossRefGoogle Scholar
  32. Herskovits AA, Auerbuch V, Portnoy DA (2007) Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog 3:e51PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527PubMedCrossRefGoogle Scholar
  34. Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P (2002) Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev 186:164–171PubMedCrossRefGoogle Scholar
  35. Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium. Cell Host Microbe 12:778–790PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ip WK, Sokolovska A, Charriere GM, Boyer L, Dejardin S, Cappillino MP, Yantosca LM, Takahashi K, Moore KJ, Lacy-Hulbert A, Stuart LM (2010) Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J Immunol 184:7071–7081PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361–368PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kang YS, Do Y, Lee HK, Park SH, Cheong C, Lynch RM, Loeffler JM, Steinman RM, Park CG (2006) A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125:47–58PubMedCrossRefGoogle Scholar
  39. Kaplan G (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6:797–807PubMedCrossRefGoogle Scholar
  40. Kasperkovitz PV, Cardenas ML, Vyas JM (2010) TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. J Immunol 185:7614–7622PubMedCentralPubMedCrossRefGoogle Scholar
  41. Knodler LA, Celli J (2011) Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol 13:1319–1327PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ma J, Becker C, Lowell CA, Underhill DM (2012) Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 287:34149–34156PubMedCentralPubMedCrossRefGoogle Scholar
  43. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429PubMedCrossRefGoogle Scholar
  44. Mueller-Ortiz SL, Drouin SM, Wetsel RA (2004) The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 72:2899–2906PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mukhopadhyay S, Varin A, Chen Y, Liu B, Tryggvason K, Gordon S (2010) SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood 117:1319–1328PubMedCrossRefGoogle Scholar
  46. Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW, Shi Y (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:807–818PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nunes P, Demaurex N (2010) The role of calcium signaling in phagocytosis. J Leukoc Biol 88:57–68PubMedCrossRefGoogle Scholar
  48. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766–13771PubMedCentralPubMedCrossRefGoogle Scholar
  49. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189:204–213PubMedCrossRefGoogle Scholar
  50. Peiser L, Mukhopadhyay S, Gordon S (2002) Scavenger receptors in innate immunity. Curr Opin Immunol 14:123–128PubMedCrossRefGoogle Scholar
  51. Platt N, Gordon S (1998) Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 5:R193–R203PubMedCrossRefGoogle Scholar
  52. Poussin C, Foti M, Carpentier JL, Pugin J (1998) CD14-dependent endotoxin internalization via a macropinocytic pathway. J Biol Chem 273:20285–20291PubMedCrossRefGoogle Scholar
  53. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517PubMedCrossRefGoogle Scholar
  54. Rosas M, Liddiard K, Kimberg M, Faro-Trindade IS, McDonald JU, Williams DL, Brown GD, Taylor PR (2008) The induction of inflammation by Dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J Immunol 181:3549–3557PubMedCrossRefGoogle Scholar
  55. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458:899–903PubMedCentralPubMedCrossRefGoogle Scholar
  56. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Muller M, Blander JM (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474:385–389PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257PubMedCrossRefGoogle Scholar
  58. Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90:1513–1522PubMedCentralPubMedCrossRefGoogle Scholar
  59. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Reis e Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–892PubMedCrossRefGoogle Scholar
  60. Sengelov H, Kjeldsen L, Kroeze W, Berger M, Borregaard N (1994) Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. J Immunol 153:804–810PubMedGoogle Scholar
  61. Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Gotz F, Liu GY, Underhill DM (2010) Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7:38–49PubMedCentralPubMedCrossRefGoogle Scholar
  62. Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, Hennessy EJ, Ezekowitz RA, Moore KJ (2005) Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170:477–485PubMedCentralPubMedCrossRefGoogle Scholar
  63. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296PubMedCrossRefGoogle Scholar
  64. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649PubMedCentralPubMedCrossRefGoogle Scholar
  65. Torchinsky MB, Garaude J, Martin AP, Blander JM (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82PubMedCrossRefGoogle Scholar
  66. Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852PubMedCrossRefGoogle Scholar
  67. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815PubMedCrossRefGoogle Scholar
  68. Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550PubMedCentralPubMedCrossRefGoogle Scholar
  69. van Kooyk Y, Unger WW, Fehres CM, Kalay H, Garcia-Vallejo JJ (2012) Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Mol Immunol 55:143–145PubMedCrossRefGoogle Scholar
  70. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174PubMedCrossRefGoogle Scholar
  71. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351PubMedCrossRefGoogle Scholar
  72. Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434PubMedCrossRefGoogle Scholar
  73. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157PubMedCrossRefGoogle Scholar
  74. Wines BD, Hogarth PM (2006) IgA receptors in health and disease. Tissue Antigens 68:103–114PubMedCrossRefGoogle Scholar
  75. Wolf AJ, Arruda A, Reyes CN, Kaplan AT, Shimada T, Shimada K, Arditi M, Liu G, Underhill DM (2011) Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J Immunol 187:6002–6010PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Immunology, Department of Biomedical SciencesCedars-Sinai Medical Center, F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research InstituteLos AngelesUSA

Personalised recommendations