The Muscle Metaphor in Self-Regulation in the Light of Current Theorizing on Muscle Physiology

Chapter

Abstract

Self-regulation researchers have frequently compared self-regulation with a muscle postulating that self-regulatory activity resembles muscle activity. Self-regulation and muscle activity are supposed to require both energy resources and the depletion of these resources should underlie the performance decline after a strenuous self-regulatory activity (the ego-depletion effect), as well as the decrease in maximum muscle force after heavy physical exercise. The muscle metaphor also claims that self-regulation can be trained and strengthened like a muscle. Repeatedly performing self-regulatory tasks should lead to higher self-regulation capacities like repeatedly exercising a muscle leads to increased muscle force and endurance. Drawing on a presentation of recent research and theorizing on the mechanisms of muscle contraction and metabolism, we discuss the muscle metaphor’s ideas of muscle fatigue, energy depletion, and muscle training. We show that muscle metabolism and muscle training are highly complex processes that are not adequately captured by the muscle metaphor. In particular, the muscle metaphor creates the impression that resource depletion is the sole (or main) determinant of muscle fatigue. This contrasts with the physiological literature that discusses resource depletion as one among several factors involved in muscle fatigue and that does not agree on its importance for muscle fatigue. We also discuss the advantages and drawbacks of using the muscle metaphor’s oversimplified model of muscle functioning in self-regulation research.

Keywords

Muscular force Muscle physiology Energy metabolism Muscle metaphor 

References

  1. Allen, D. G., Lännergren, J., & Westerblad, H. (2002). Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres. Pflügers Archiv—European Journal of Physiology, 443, 836–842. doi:10.1007/s00424-001-0756-y.PubMedCrossRefGoogle Scholar
  2. Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Review, 88, 287–332. doi:10.1152/physrev.00015.2007.CrossRefGoogle Scholar
  3. Baker, A. J., Kostov, K. G., Miller, R. G., & Weiner, M. W. (1993). Slow force recovery after long-duration exercise: Metabolic and activation factors in muscle fatigue. Journal of Applied Physiology, 74(5), 2294–2300.PubMedGoogle Scholar
  4. Baker, A. J., Carson, P. J., Miller, R. G., & Weiner, M. W. (1994). Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR. Muscle & Nerve, 17, 1002–1009. doi:10.1002/mus.880170907.CrossRefGoogle Scholar
  5. Baldwin, J., Snow, R. J., Gibala, M. J., Garnham, A., Howarth, K., & Febbraio, M. A. (2003). Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. Journal of Applied Physiology, 94, 2181–2187. doi:10.1152/japplphysiol.00866.2002.PubMedGoogle Scholar
  6. Baumeister, R. F. (2002). Ego depletion and self-control failure: An energy model of the self’s executive function. Self and Identity, 1, 129–136. doi:10.1080/152988602317319302.CrossRefGoogle Scholar
  7. Baumeister, R. F. (2012). Self-control: The moral muscle. The Psychologist, 25(2), 112–115.Google Scholar
  8. Baumeister, R. F., & Vohs, K. D. (2007). Self-regulation, ego depletion, and motivation. Social and Personality Psychology Compass, 1, 1–14. doi:10.1111/j.1751-9004.2007.00001.x.CrossRefGoogle Scholar
  9. Baumeister, R. F., Muraven, M., & Tice, D. M. (2000). Ego depletion: A resource model of volition, self-regulation, and controlled processing. Social Cognition, 18, 130–150. doi:10.1521/soco.2000.18.2.130.CrossRefGoogle Scholar
  10. Baumeister, R. F., Gailliot, M., DeWall, C. N., & Oaten, M. (2006). Self-regulation and personality: How interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. Journal of Personality, 74, 1773–1801. doi:10.1111/j.1467-6494.2006.00428.x.PubMedCrossRefGoogle Scholar
  11. Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength-model of self-control. Current Directions in Psychological Science, 16, 351–355. doi:10.1111/j.1467-8721.2007.00534.x.CrossRefGoogle Scholar
  12. Beedie, C. J., & Lane, A. M. (2012). The role of glucose in self-control: Another look at the evidence and an alternative conceptualization. Personality and Social Psychology Review, 16, 143–153. doi:10.1177/1088868311419817.PubMedCrossRefGoogle Scholar
  13. Boyd, R. (1993). Metaphor and theory change: What is ‘metaphor’ a metaphor for? In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 481–533). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2005). Exercise physiology: Human bioenergetics and its application (4th ed.). New York: McGraw-Hill.Google Scholar
  15. Callow, M., Morton, A., & Guppy, M. (1986). Marathon fatigue: The role of plasma fatty acids, muscle glycogen and blood glucose. European Journal of Applied Physiology and Occupational Physiology, 55, 654–661. doi:10.1007/BF00423212.PubMedCrossRefGoogle Scholar
  16. Chin, E. R., & Allen, D. G. (1997). Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. Journal of Physiology, 498(1), 17–29.PubMedPubMedCentralGoogle Scholar
  17. Dawson, M. J., Gadian, D. G., & Wilkie, D. R. (1978). Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature, 274, 861–866. doi:10.1038/274861a0.PubMedCrossRefGoogle Scholar
  18. Fitts, R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews, 74(1), 49–94.PubMedGoogle Scholar
  19. Fitts, R. H. (2004). Mechanisms of muscular fatigue. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 279–300). Basel: Karger.Google Scholar
  20. Fitts, R. H., & Holloszy, J. O. (1976). Lactate and contractile force in frog muscle during development of fatigue and recovery. American Journal of Physiology, 231(2), 430–433.PubMedGoogle Scholar
  21. Fry, A. C. (2004). The role of resistance exercise intensity on muscle fibre adaptions. Sports Medicine, 34, 663–679. doi:10.2165/00007256-200434100-00004.PubMedCrossRefGoogle Scholar
  22. Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., & …Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325–336. doi:10.1037/0022-3514.92.2.325.PubMedCrossRefGoogle Scholar
  23. Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789.PubMedGoogle Scholar
  24. Greenhaff, P. L., Hultman, E., & Harris, R. C. (2004). Carbohydrate metabolism. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 108–151). Basel: Karger.Google Scholar
  25. Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136, 495–525. doi:10.1111/j.1751-9004.2007.00001.x.PubMedCrossRefGoogle Scholar
  26. Holloszy, J. O., & Coyle, E. F. (1984). Adaptions of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology, 56(4), 831–838.PubMedGoogle Scholar
  27. Homsher, E. (1987). Muscle enthalpy production and its relationship to actomyosin ATPase. Annual Review of Physiology, 49, 673–690. doi:10.1146/annurev.ph.49.030187.003325.PubMedCrossRefGoogle Scholar
  28. Inzlicht, M., & Schmeichel, B. J. (2012). What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspectives on Psychological Science, 7, 450–463. doi:10.1177/1745691612454134.CrossRefGoogle Scholar
  29. Job, V., Dweck, C. S., & Walton, G. M. (2010). Ego depletion-Is it all in your head? Implicit theories about willpower affect self-regulation. Psychological Science, 21, 1686–1693. doi:10.1177/0956797610384745.PubMedCrossRefGoogle Scholar
  30. Karatzaferi, C., de Haan, A., Ferguson, R. A., van Mechelen, W., & Sargeant, A. J. (2001). Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Archiv—European Journal of Physiology, 442, 467–474. doi:10.1007/s004240100552.PubMedCrossRefGoogle Scholar
  31. Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: Physiological mechanisms of adaption. Exercise & Sport Sciences Reviews, 24, 363–398. doi:00003677-199600240-00014.CrossRefGoogle Scholar
  32. Kushmerick, M. J. (1983). Energetics of muscle contraction. In L. D. Peachey, R. H. Adrian, & S. R. Geiger (Eds.), Handbook of physiology (pp. 189–236). Baltimore: American Physiological Society.Google Scholar
  33. Lopez, R. B., Vohs, K. D., Wagner, D. D., & Heatherton, T. F. (in press). Self-regulatory strength: Neural mechanisms and implications for training. In G. H. E. Gendolla, M. Tops, & S. Koole (Eds.), Biobehavioral approaches to self-regulation. New York: Springer.Google Scholar
  34. MacIntosh, B. R., & Shahi, R. S. (2011). A peripheral governor regulates muscle contraction. Journal of Applied Physiology: Nutrition and Metabolism, 36, 1–11. doi:10.1139/H10-073.Google Scholar
  35. MacIntosh, B. R., Holash, R. J., & Renaud, J.-M. (2012). Skeletal muscle fatigue: Regulation of excitation-contraction coupling to avoid metabolic catastrophe. Journal of Cell Science, 125, 2105–2114. doi:10.1242/jcs.093674.PubMedCrossRefGoogle Scholar
  36. McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Baltimore: Lippincott Williams & Wilkins.Google Scholar
  37. Molden, D. C., Hui, C. M., Scholer, A. A., Meier, B. P., Noreen, E. E., D’Agostino, P. R., & Martin, V. (2012). Motivational versus metabolic effects of carbohydrates on self-control. Psychological Science, 23, 1137–1144. doi:10.1177/0956797612439069.PubMedCrossRefGoogle Scholar
  38. Poortmans, J. R. (2004). Protein Metabolism. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 227–278). Basel: Karger.Google Scholar
  39. Sahlin, K., Edström, L., & Sjöholm, H. (1987). Force, relaxation and energy metabolism of rat soleus muscle during anaerobic contraction. Acta Physiologica Scandinavica, 129, 1–7. doi:10.1111/j.1748-1716.1987.tb08033.x.PubMedCrossRefGoogle Scholar
  40. Sahlin, K., Cizinsky, S., Warholm, M., & Höberg, J. (1992). Repetitive static muscle contractions in humans: A trigger of metabolic and oxidative stress? European Journal of Applied Physiology and Occupational Physiology, 64, 228–236. doi:10.1007/BF00626285.PubMedCrossRefGoogle Scholar
  41. Sahlin, K., Tonkonogi, M., & Söderlund, K. (1998). Energy supply and muscle fatigue in humans. Acta Physiologica Scandinavia, 162, 261–266. doi:10.1046/j.1365-201X.1998.0298 f.x.CrossRefGoogle Scholar
  42. Saltin, B., & Karlsson, J. (1971). Muscle glycogen utilization during work of different intensities. Advances in Experimental Medicine and Biology, 11, 289–299. doi:10.1007/978-1-4613-4609-825.CrossRefGoogle Scholar
  43. Saugen, E., Vollestad, N. K., Gibson, H., Martin, P. A., & Edwards, R. H. T. (1997). Dissociation between metabolic and contractile responses during intermittent isometric exercise in man. Experimental Physiology, 82(1), 213–226.PubMedGoogle Scholar
  44. Scott, C. B. (2008). A primer for the exercise and nutrition sciences: Thermodynamics, bioenergetics, metabolism. Totowa: Humana Press.CrossRefGoogle Scholar
  45. Sherwood, L. (2010). Human physiology: From cells to systems (7th ed.). Belmont: Brooks/Cole.Google Scholar
  46. Tiidus, P. M., Tupling, A. R., & Houston, M. E. (2012). Biochemistry primer for exercise science (4th ed.). Champaign: Human Kinetics.Google Scholar
  47. Westerblad, H., Allen, D. G., Bruton, J. D., Andrade, F. H., & Lännergren, J. (1998). Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiologica Scandinavica, 162, 253–260. doi:10.1046/j.1365-201X.1998.0301 f.x.PubMedCrossRefGoogle Scholar
  48. Westerblad, H., Allen, D. G., & Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? Physiology, 17(1), 17–21.Google Scholar
  49. Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research, 316, 3093–3099. doi:10.1016/j.yexcr.2010.05.019.PubMedCrossRefGoogle Scholar
  50. Wright, R. A., Patrick, B. M., Thomas, C., & Barreto, P. (2013). When fatigue promotes striving: Confirmation that success importance moderates resource depletion influence on effort-related cardiovascular response. Biological Psychology, 93, 316–324. doi:10.1016/j.biopsycho.2013.02.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Geneva Motivation Lab, FPSE Department of PsychologyUniversity of GenevaGenevaSwitzerland

Personalised recommendations