Advertisement

Identification of miRNAs and Their Targets in C. elegans

  • Sarah Azoubel Lima
  • Amy E. Pasquinelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 825)

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional regulation of specific target genes. Since their discovery in Caenorhabditis elegans, they have been associated with the control of virtually all biological processes and are known to play major roles in development and cellular homeostasis. Yet the biological roles of most miRNAs remain to be fully known. Furthermore, the precise rules by which miRNAs recognize their targets and mediate gene silencing are still unclear. Systematic identification of miRNAs and of the RNAs they regulate is essential to close these knowledge gaps. Studies in C. elegans have been instrumental not only in the discovery phase of miRNA biology but also in the elucidation of mechanisms regulating miRNA expression, target recognition and regulation. This chapter highlights some of the main challenges still present in the field, while introducing the major studies and methods used to find miRNAs and their targets in the worm.

Keywords

microRNAs miRNAs Posttranscriptional regulation Argonaute C. elegans Caenorhabditis elegans RNA-seq CLIP 

Notes

Acknowledgements

We thank members of the Pasquinelli lab for critical review of this manuscript. This work was supported by funding from the NIH (GM071654), Keck, and Peter Gruber Foundations.

References

  1. Aalto AP, Pasquinelli AE (2012) Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 24:333–340. doi: 10.1016/j.ceb.2012.03.006 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Abrahante JE, Daul AL, Li M et al (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4:625–637PubMedCrossRefGoogle Scholar
  3. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662. doi: 10.1242/dev.02073 PubMedCrossRefGoogle Scholar
  4. Ambros V (2003) A uniform system for microRNA annotation. RNA 9:277–279. doi: 10.1261/rna.2183803 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ambros V (2008) The evolution of our thinking about microRNAs. Nat Med 14:1036–1040. doi: 10.1038/nm1008-1036 PubMedCrossRefGoogle Scholar
  6. Andachi Y (2008) A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target. RNA 14:2440–2451. doi: 10.1261/rna.1139508 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Baek D, Villén J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71. doi: 10.1038/nature07242 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563. doi: 10.1016/j.cell.2005.07.031 PubMedCrossRefGoogle Scholar
  9. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi: 10.1038/35053110 PubMedCrossRefGoogle Scholar
  11. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153. doi: 10.1093/nar/gkm995 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Braun JE, Huntzinger E, Izaurralde E (2013) The role of GW182 proteins in miRNA-mediated gene silencing. Adv Exp Med Biol 768:147–163. doi: 10.1007/978-1-4614-5107-5_9 PubMedCrossRefGoogle Scholar
  13. Broughton JP, Pasquinelli AE (2013) Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods. doi: 10.1016/j.ymeth.2013.03.033 PubMedGoogle Scholar
  14. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486. doi:  10.1038/nature08170 PubMedCentralPubMedGoogle Scholar
  15. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286. doi: 10.1002/wrna.31 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ding XC, Grosshans H (2009) Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28:213–222. doi: 10.1038/emboj.2008.275 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ding L, Spencer A, Morita K, Han M (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447. doi: 10.1016/j.molcel.2005.07.013 PubMedCrossRefGoogle Scholar
  18. Ding XC, Slack FJ, Grosshans H (2008) The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 7:3083–3090PubMedCentralPubMedCrossRefGoogle Scholar
  19. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200PubMedCentralPubMedCrossRefGoogle Scholar
  20. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi: 10.1038/nrc1840 PubMedCrossRefGoogle Scholar
  21. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi: 10.1146/annurev-biochem-060308-103103 PubMedCrossRefGoogle Scholar
  22. Finnegan EF, Pasquinelli AE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48:51–68. doi: 10.3109/10409238.2012.738643 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi: 10.1101/gr.082701.108 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787. doi: 10.1126/science.1196914 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Grad Y, Aach J, Hayes GD et al (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263PubMedCrossRefGoogle Scholar
  26. Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138. doi: 10.1385/1-59745-123-1:129 PubMedGoogle Scholar
  27. Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi: 10.1093/nar/gkj112 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRefGoogle Scholar
  29. Grosshans H, Johnson T, Reinert KL et al (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 8:321–330. doi: 10.1016/j.devcel.2004.12.019 PubMedCrossRefGoogle Scholar
  30. Gu SG, Pak J, Barberan-Soler S et al (2007) Distinct ribonucleoprotein reservoirs for microRNA and siRNA populations in C. elegans. RNA 13:1492–1504. doi: 10.1261/rna.581907 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. doi: 10.1038/nature09267 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141:129–141. doi: 10.1016/j.cell.2010.03.009 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hammell M, Long D, Zhang L et al (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5:813–819. doi: 10.1038/nmeth.1247 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Harris TW, Antoshechkin I, Bieri T et al (2010) WormBase: a comprehensive resource for nematode research. Nucleic Acids Res 38:D463–D467. doi: 10.1093/nar/gkp952 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. doi: 10.1016/j.cell.2013.03.043 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hua Y-J, Tang Z-Y, Tu K et al (2009) Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics 10:214. doi: 10.1186/1471-2164-10-214 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hunter SE, Finnegan EF, Zisoulis DG et al (2013) Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet 9:e1003353. doi: 10.1371/journal.pgen.1003353 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Hutvágner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838. doi: 10.1126/science.1062961 PubMedCrossRefGoogle Scholar
  39. Ibáñez-Ventoso C, Yang M, Guo S et al (2006) Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5:235–246. doi: 10.1111/j.1474-9726.2006.00210.x PubMedCrossRefGoogle Scholar
  40. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi: 10.1126/science.1168978 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1:5. doi: 10.1186/1758-907X-1-5 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature 469:97–101. doi: 10.1038/nature09616 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647. doi: 10.1016/j.cell.2005.01.014 PubMedCrossRefGoogle Scholar
  44. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849. doi: 10.1038/nature02255 PubMedCrossRefGoogle Scholar
  45. Jovanovic M, Reiter L, Picotti P et al (2010) A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7:837–842. doi: 10.1038/nmeth.1504 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Jovanovic M, Reiter L, Clark A et al (2012) RIP-chip-SRM—a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans. Genome Res 22:1360–1371. doi: 10.1101/gr.133330.111 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10:R54. doi: 10.1186/gb-2009-10-5-r54 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kato M, Chen X, Inukai S et al (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17:1804–1820. doi: 10.1261/rna.2714411 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kaufman EJ, Miska EA (2010) The microRNAs of Caenorhabditis elegans. Semin Cell Dev Biol 21:728–737. doi: 10.1016/j.semcdb.2010.07.001 PubMedCrossRefGoogle Scholar
  50. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. doi: 10.1038/ng2135 PubMedCrossRefGoogle Scholar
  51. Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450. doi: 10.1016/j.devcel.2006.09.009 PubMedCrossRefGoogle Scholar
  52. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. doi: 10.1038/nsmb.1838 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi: 10.1093/nar/gkq1027 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. doi: 10.1038/nrg2843 PubMedGoogle Scholar
  55. Kudlow BA, Zhang L, Han M (2012) Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol Cell 46:530–541. doi: 10.1016/j.molcel.2012.03.011 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi: 10.1126/science.1064921 PubMedCrossRefGoogle Scholar
  57. Lall S, Grün D, Krek A et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16:460–471. doi: 10.1016/j.cub.2006.01.050 PubMedCrossRefGoogle Scholar
  58. Lancman JJ, Caruccio NC, Harfe BD et al (2005) Analysis of the regulation of lin-41 during chick and mouse limb development. Dev Dyn 234:948–960. doi: 10.1002/dvdy.20591 PubMedCrossRefGoogle Scholar
  59. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. doi: 10.1126/science.1065062 PubMedCrossRefGoogle Scholar
  60. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. doi: 10.1126/science.1065329 PubMedCrossRefGoogle Scholar
  61. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  62. Lehrbach NJ, Castro C, Murfitt KJ et al (2012) Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans. RNA 18:2220–2235. doi: 10.1261/rna.035402.112 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Leung AKL, Young AG, Bhutkar A et al (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18:237–244. doi: 10.1038/nsmb.1991 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi: 10.1016/j.cell.2004.12.035 PubMedCrossRefGoogle Scholar
  65. Lim LP, Lau NC, Weinstein EG et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008. doi: 10.1101/gad.1074403 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773. doi: 10.1038/nature03315 PubMedCrossRefGoogle Scholar
  67. Lin S-Y, Johnson SM, Abraham M et al (2003) The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4:639–650PubMedCrossRefGoogle Scholar
  68. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056. doi: 10.1126/science.1076311 PubMedCrossRefGoogle Scholar
  69. Mangone M, MacMenamin P, Zegar C et al (2008) UTRome.org: a platform for 3'UTR biology in C. elegans. Nucleic Acids Res 36:D57–D62. doi: 10.1093/nar/gkm946 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Mangone M, Manoharan AP, Thierry-Mieg D et al (2010) The landscape of C. elegans 3'UTRs. Science 329:432–435. doi: 10.1126/science.1191244 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Maragkakis M, Reczko M, Simossis VA et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276. doi: 10.1093/nar/gkp292 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Martinez NJ, Ow MC, Barrasa MI et al (2008a) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22:2535–2549. doi: 10.1101/gad.1678608 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Martinez NJ, Ow MC, Reece-Hoyes JS et al (2008b) Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 18:2005–2015. doi: 10.1101/gr.083055.108 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217. doi: 10.1016/j.cell.2006.07.031 PubMedCrossRefGoogle Scholar
  75. Miska EA, Alvarez-Saavedra E, Abbott AL et al (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3:e215. doi: 10.1371/journal.pgen.0030215 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Mondol V, Pasquinelli AE (2012) Let’s make it happen: the role of let-7 microRNA in development. Curr Top Dev Biol 99:1–30. doi: 10.1016/B978-0-12-387038-4.00001-X PubMedCrossRefGoogle Scholar
  77. O’Farrell F, Esfahani SS, Engström Y, Kylsten P (2008) Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade. Dev Dyn 237:196–208. doi: 10.1002/dvdy.21396 PubMedCrossRefGoogle Scholar
  78. Papadopoulos GL, Reczko M, Simossis VA et al (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158. doi: 10.1093/nar/gkn809 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282. doi: 10.1038/nrg3162 PubMedGoogle Scholar
  80. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89. doi: 10.1038/35040556 PubMedCrossRefGoogle Scholar
  81. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607 PubMedCrossRefGoogle Scholar
  82. Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi: 10.1101/gad.1004402 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398. doi: 10.1038/nmeth0609-397 PubMedCrossRefGoogle Scholar
  84. Ruby JG, Jan C, Player C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207. doi: 10.1016/j.cell.2006.10.040 PubMedCrossRefGoogle Scholar
  85. Schulman BRM, Esquela-Kerscher A, Slack FJ (2005) Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn 234:1046–1054. doi: 10.1002/dvdy.20599 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Selbach M, Schwanhäusser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. doi: 10.1038/nature07228 PubMedCrossRefGoogle Scholar
  87. Slack FJ, Basson M, Liu Z et al (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669PubMedCrossRefGoogle Scholar
  88. Stadler M, Artiles K, Pak J, Fire A (2012) Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res 22:2418–2426. doi: 10.1101/gr.136515.111 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Sugimoto Y, König J, Hussain S et al (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13:R67. doi: 10.1186/gb-2012-13-8-r67 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174. doi: 10.1038/nsmb.1921 PubMedCrossRefGoogle Scholar
  91. Warf MB, Johnson WE, Bass BL (2011) Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 17:563–577. doi: 10.1261/rna.2432311 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRefGoogle Scholar
  93. Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. doi: 10.1093/nar/gkq1056 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613. doi: 10.1016/j.molcel.2007.09.014 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zhang L, Hammell M, Kudlow BA et al (2009) Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 136:3043–3055. doi: 10.1242/dev.039008 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zisoulis DG, Lovci MT, Wilbert ML et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179. doi: 10.1038/nsmb.1745 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Zisoulis DG, Yeo GW, Pasquinelli AE (2011) Comprehensive identification of miRNA target sites in live animals. Methods Mol Biol 732:169–185. doi: 10.1007/978-1-61779-083-6_13 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of BiologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations