Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease

  • Stefanie Gerstberger
  • Markus Hafner
  • Manuel Ascano
  • Thomas Tuschl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 825)

Abstract

RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.

Keywords

RNA-binding domains, overview RNA-binding proteins, tissue specificity RNA-binding proteins, abundance RNA-binding proteins, genetic diseases 

References

  1. Abbasi-Moheb L, Mertel S, Gonsior M et al (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 90:847–855. doi:10.1016/j.ajhg.2012.03.021 PubMedCentralPubMedGoogle Scholar
  2. Abreu AP, Dauber A, Macedo DB et al (2013) Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 368:2467–2475. doi:10.1056/NEJMoa1302160 PubMedGoogle Scholar
  3. Abdelhaleem M (2005) RNA, helicases: regulators of differentiation. Clinical Biochem 38:499–503. doi:10.1016/j.clinbiochem.2005.01.010 Google Scholar
  4. Achsel T, Stark H, Luhrmann R (2001) The Sm domain is an ancient RNA-binding motif with oligo(U) specificity. Proc Natl Acad Sci U S A 98:3685–3689. doi:10.1073/pnas.071033998 PubMedCentralPubMedGoogle Scholar
  5. Agamy O, Ben Zeev B, Lev D et al (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544. doi:10.1016/j.ajhg.2010.09.007 PubMedCentralPubMedGoogle Scholar
  6. Akopian D, Shen K, Zhang X, Shan S-O (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721. doi:10.1146/annurev-biochem-072711-164732Google Scholar
  7. Alazami AM, Al-Owain M, Alzahrani F et al (2012) Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism. Hum Mutat 33:1429–1434. doi:10.1002/humu.22175 PubMedGoogle Scholar
  8. Alazami AM, Hijazi H, Al-Dosari MS et al (2013) Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus. J Med Genet 50:425–430. doi:10.1136/jmedgenet-2012-101378 PubMedGoogle Scholar
  9. Al-Sukhni W, Rothenmund H, Borgida AE et al (2008) Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet 124:271–278. doi:10.1007/s00439-008-0554-0 PubMedGoogle Scholar
  10. Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188. doi:10.1038/13810 PubMedGoogle Scholar
  11. Amouri R, Moreira M-C, Zouari M et al (2004) Aprataxin gene mutations in Tunisian families. Neurology 63:928–929PubMedGoogle Scholar
  12. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464PubMedCentralPubMedGoogle Scholar
  13. Anderson JT, Wang X (2009) Nuclear RNA surveillance: no sign of substrates tailing off. Crit Rev Biochem Mol Biol 44:16–24. doi:10.1080/10409230802640218 PubMedGoogle Scholar
  14. Andreou AZ, Klostermeier D (2013) The DEAD-box helicase eIF4A: paradigm or the odd one out? RNA Biol 10:19–32. doi:10.4161/rna.21966 PubMedCentralPubMedGoogle Scholar
  15. Anger AM, Armache J-P, Berninghausen O et al (2013) Structures of the human and Drosophila 80S ribosome. Nature 497:80–85. doi:10.1038/nature12104 PubMedGoogle Scholar
  16. Anthony K, Gallo JM (2010) Aberrant RNA processing events in neurological disorders. Brain Res 1338:67–77. doi:10.1016/j.brainres.2010.03.008 PubMedGoogle Scholar
  17. Antonellis A, Green ED (2008) The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9:87–107. doi:10.1146/annurev.genom.9.081307.164204 PubMedGoogle Scholar
  18. Antonellis A, Ellsworth RE, Sambuughin N et al (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72:1293–1299. doi:10.1086/375039 PubMedCentralPubMedGoogle Scholar
  19. Antonicka H, Ostergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet 87:115–122. doi:10.1016/j.ajhg.2010.06.004 PubMedCentralPubMedGoogle Scholar
  20. Apweiler R, Attwood TK, Bairoch A et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29:37–40PubMedCentralPubMedGoogle Scholar
  21. Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207. doi:10.1038/nature04916 PubMedGoogle Scholar
  22. Aravind L, Koonin EV (2001a) A natural classification of ribonucleases. Meth Enzymol 341:3–28PubMedGoogle Scholar
  23. Aravind L, Koonin EV (2001b) THUMP–a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. Trends Biochem Sci 26:215–217PubMedGoogle Scholar
  24. Arcus V (2002) OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12:794–801. doi:10.1016/S0959-440X(02)00392-5 PubMedGoogle Scholar
  25. Armanios MY, Chen JJ-L, Cogan JD et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356:1317–1326. doi:10.1056/NEJMoa066157 PubMedGoogle Scholar
  26. Armistead J, Khatkar S, Meyer B et al (2009) Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am J Hum Genet 84:728–739. doi:10.1016/j.ajhg.2009.04.017 PubMedCentralPubMedGoogle Scholar
  27. Ascano M, Hafner M, Cekan P et al (2011) Identification of RNA-protein interaction networks using PAR-CLIP. WIREs RNA 3:159–177. doi:10.1002/wrna.1103 PubMedCentralPubMedGoogle Scholar
  28. Ascano M, Mukherjee N, Bandaru P et al (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492:382–386. doi:10.1038/nature11737 PubMedCentralPubMedGoogle Scholar
  29. Ascano M, Gerstberger S, Tuschl T (2013) Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr Opin Genet Dev 23:20–28. doi:10.1016/j.gde.2013.01.003 PubMedCentralPubMedGoogle Scholar
  30. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556 PubMedCentralPubMedGoogle Scholar
  31. Astuti D, Morris MR, Cooper WN et al (2012) Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat Genet 44:277–284. doi:10.1038/ng.1071 PubMedGoogle Scholar
  32. Atianand MK, Fitzgerald KA (2013) Molecular basis of DNA recognition in the immune system. J Immunol 190:1911–1918. doi:10.4049/jimmunol.1203162 PubMedCentralPubMedGoogle Scholar
  33. Auweter SD, Oberstrass FC, Allain FHT (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34:4943–4959. doi:10.1093/nar/gkl620 PubMedCentralPubMedGoogle Scholar
  34. Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790PubMedGoogle Scholar
  35. Baltz AG, Munschauer M, Schwanhausser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690. doi:10.1016/j.molcel.2012.05.021 PubMedGoogle Scholar
  36. Banfi S, Servadio A, Chung MY et al (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520. doi:10.1038/ng0894-513 PubMedGoogle Scholar
  37. Barckmann B, Simonelig M (2013) Control of maternal mRNA stability in germ cells and early embryos. Biochim Biophys Acta 1829:714–724. doi:10.1016/j.bbagrm.2012.12.011 PubMedGoogle Scholar
  38. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002 PubMedCentralPubMedGoogle Scholar
  39. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. doi:10.1016/j.cell.2013.02.012 PubMedCentralPubMedGoogle Scholar
  40. Battle DJ, KASIM M, Yong J et al (2006) The SMN complex: an assembly machine for RNPs. Cold Spring Harbor Symp Quant Biol 71:313–320. doi:10.1101/sqb.2006.71.001 PubMedGoogle Scholar
  41. Beggs JD (2005) Lsm proteins and RNA processing. Biochem Soc Trans 33:433–438. doi:10.1042/BST0330433 PubMedGoogle Scholar
  42. Bell JL, Wächter K, Mühleck B et al (2013) Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70:2657–2675. doi:10.1007/s00018-012-1186-z PubMedCentralPubMedGoogle Scholar
  43. Beloglazova N, Flick R, Tchigvintsev A et al (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110. doi:10.1074/jbc.M112.431148 PubMedCentralPubMedGoogle Scholar
  44. Belostotsky R, Ben-Shalom E, Rinat C et al (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200. doi:10.1016/j.ajhg.2010.12.010 PubMedCentralPubMedGoogle Scholar
  45. Bennasser Y, Chable-Bessia C, Triboulet R et al (2011) Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat Struct Mol Biol 18:323–327. doi:10.1038/nsmb.1987 PubMedCentralPubMedGoogle Scholar
  46. Berg MG, Singh LN, Younis I et al (2012) U1 snRNP determines mRNA length and regulates isoform expression. Cell 150:53–64. doi:10.1016/j.cell.2012.05.029 PubMedCentralPubMedGoogle Scholar
  47. Berger W, Steiner E, Grusch M et al (2008) Vaults and the major vault protein: Novel roles in signal pathway regulation and immunity. Cell Mol Life Sci 66:43–61. doi:10.1007/s00018-008-8364-z Google Scholar
  48. Bernier FP, Caluseriu O, Ng S et al (2012) Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet 90:925–933. doi:10.1016/j.ajhg.2012.04.004 PubMedCentralPubMedGoogle Scholar
  49. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi:10.1038/35053110 PubMedGoogle Scholar
  50. Bhalla K, Phillips HA, Crawford J et al (2004) The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J Hum Genet 49:308–311. doi:10.1007/s10038-004-0145-4 PubMedGoogle Scholar
  51. Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103:367–370PubMedGoogle Scholar
  52. Boissel S, Reish O, Proulx K et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85:106–111. doi:10.1016/j.ajhg.2009.06.002 PubMedCentralPubMedGoogle Scholar
  53. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585. doi:10.1038/nrm2184 PubMedGoogle Scholar
  54. Bonifati V, Rizzu P, van Baren MJ et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259. doi:10.1126/science.1077209 PubMedGoogle Scholar
  55. Boocock GRB, Morrison JA, Popovic M et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33:97–101. doi:10.1038/ng1062 PubMedGoogle Scholar
  56. Brais B, Bouchard J-P, Xie Y-G et al (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18:164–167. doi:10.1038/ng0298-164 PubMedGoogle Scholar
  57. Brauch KM, Karst ML, Herron KJ et al (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54:930–941. doi:10.1016/j.jacc.2009.05.038 PubMedCentralPubMedGoogle Scholar
  58. Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58:266–277PubMedGoogle Scholar
  59. Brickwood S, Bonthron DT, Al-Gazali LI et al (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40:685–689PubMedCentralPubMedGoogle Scholar
  60. Broderick P, Carvajal-Carmona L, Pittman AM et al (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39:1315–1317. doi:10.1038/ng.2007.18 PubMedGoogle Scholar
  61. Brook M, Smith JWS, Gray NK (2009) The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 137:595–617. doi:10.1530/REP-08-0524 PubMedGoogle Scholar
  62. Brooks SA, Blackshear PJ (2013) Tristetraprolin (TTP): Interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 1829:666–679. doi:10.1016/j.bbagrm.2013.02.003 PubMedCentralPubMedGoogle Scholar
  63. Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94–98. doi:10.1016/j.sbi.2005.01.006 PubMedGoogle Scholar
  64. Buchan JR, Kolaitis R-M, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474. doi:10.1016/j.cell.2013.05.037 PubMedCentralPubMedGoogle Scholar
  65. Buckanovich RJ, Yang YY, Darnell RB (1996) The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci 16:1114–1122PubMedGoogle Scholar
  66. Budde BS, Namavar Y, Barth PG et al (2008) tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 40:1113–1118. doi:10.1038/ng.204 PubMedGoogle Scholar
  67. Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621PubMedGoogle Scholar
  68. Bykhovskaya Y, Casas K, Mengesha E et al (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308. doi:10.1086/421530 PubMedCentralPubMedGoogle Scholar
  69. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. doi:10.1038/nrc1997 PubMedGoogle Scholar
  70. Caluseriu O, Lowry BR, McLeod R et al (2013) The hutterite variant of Treacher Collins syndrome: a 28-year-old story solved. Am J Med Genet 161A:2855–2859. doi:10.1002/ajmg.a.36172 PubMedGoogle Scholar
  71. Camargos S, Scholz S, Simón-Sánchez J et al (2008) DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol 7:207–215. doi:10.1016/S1474-4422(08)70022-X PubMedGoogle Scholar
  72. Cancel G, Dürr A, Didierjean O et al (1997) Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet 6:709–715PubMedGoogle Scholar
  73. Carpten J, Nupponen N, Isaacs S et al (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184. doi:10.1038/ng823 PubMedGoogle Scholar
  74. Casey G, Neville PJ, Plummer SJ et al (2002) RNASEL Arg462Gln variant is implicated in up to 13 % of prostate cancer cases. Nat Genet 32:581–583. doi:10.1038/ng1021 PubMedGoogle Scholar
  75. Cassandrini D, Biancheri R, Tessa A et al (2010) Pontocerebellar hypoplasia: clinical, pathologic, and genetic studies. Neurology 75:1459–1464. doi:10.1212/WNL.0b013e3181f88173 PubMedGoogle Scholar
  76. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406. doi:10.1016/j.cell.2012.04.031 PubMedGoogle Scholar
  77. Castello A, Fischer B, Hentze MW, Preiss T (2013) RNA-binding proteins in Mendelian disease. Trends Genet 29:318–327. doi:10.1016/j.tig.2013.01.004 PubMedGoogle Scholar
  78. Castilla LH, Couch FJ, Erdos MR et al (1994) Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet 8:387–391. doi:10.1038/ng1294-387 PubMedGoogle Scholar
  79. Cavdar Koc E, Burkhart W, Blackburn K et al (2001) The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J Biol Chem 276:19363–19374. doi:10.1074/jbc.M100727200 PubMedGoogle Scholar
  80. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505. doi:10.1111/j.1742-4658.2009.06908.x PubMedCentralPubMedGoogle Scholar
  81. Chakarova CF, Hims MM, Bolz H et al (2002) Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:87–92PubMedGoogle Scholar
  82. Chang K-Y, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272:2109–2117. doi:10.1111/j.1742-4658.2005.04652.x PubMedGoogle Scholar
  83. Chartier-Harlin M-C, Dachsel JC, Vilariño-Güell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406. doi:10.1016/j.ajhg.2011.08.009 PubMedCentralPubMedGoogle Scholar
  84. Cheadle JP, Gill H, Fleming N et al (2000) Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum Mol Genet 9:1119–1129PubMedGoogle Scholar
  85. Chen X, Wolin SL (2004) The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med 82:232–239PubMedGoogle Scholar
  86. Chénard CA, Richard S (2008) New implications for the QUAKING RNA binding protein in human disease. J Neurosci Res 86:233–242. doi:10.1002/jnr.21485 PubMedGoogle Scholar
  87. Cheong C-G, Hall TMT (2006) Engineering RNA sequence specificity of Pumilio repeats. Proc Natl Acad Sci U S A 103:13635–13639. doi:10.1073/pnas.0606294103 PubMedCentralPubMedGoogle Scholar
  88. Chiu C, Tebo M, Ingles J et al (2007) Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 43:337–343. doi:10.1016/j.yjmcc.2007.06.009 PubMedGoogle Scholar
  89. Cho J, Chang H, Kwon SC et al (2012) LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151:765–777. doi:10.1016/j.cell.2012.10.019 PubMedGoogle Scholar
  90. Ciganda M, Williams N (2011) Eukaryotic 5S rRNA biogenesis. WIREs RNA 2:523–533. doi:10.1002/wrna.74 PubMedCentralPubMedGoogle Scholar
  91. Cléry A, Blatter M, Allain FHT (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18:290–298. doi:10.1016/j.sbi.2008.04.002 PubMedGoogle Scholar
  92. Cmejla R, Cmejlova J, Handrkova H et al (2007) Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 28:1178–1182. doi:10.1002/humu.20608 PubMedGoogle Scholar
  93. Cobben JM, van der Steege G, Grootscholten P et al (1995) Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet 57:805–808PubMedCentralPubMedGoogle Scholar
  94. Coenen MJH, Antonicka H, Ugalde C et al (2004) Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351:2080–2086. doi:10.1056/NEJMoa041878 PubMedGoogle Scholar
  95. Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766. doi:10.1101/gad.11.21.2755 PubMedGoogle Scholar
  96. Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890. doi:10.1146/annurev.biochem.73.011303.074032 PubMedGoogle Scholar
  97. Cook KB, Kazan H, Zuberi K et al (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308. doi:10.1093/nar/gkq1069 PubMedCentralPubMedGoogle Scholar
  98. Cools J, DeAngelo DJ, Gotlib J et al (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214. doi:10.1056/NEJMoa025217 PubMedGoogle Scholar
  99. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793. doi:10.1016/j.cell.2009.02.011 PubMedCentralPubMedGoogle Scholar
  100. Costanzo MC, Hogan JD, Cusick ME et al (2000) The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28:73–76PubMedCentralPubMedGoogle Scholar
  101. Criscuolo C, Mancini P, Menchise V et al (2005) Very late onset in ataxia oculomotor apraxia type I. Ann Neurol 57:777. doi:10.1002/ana.20463 PubMedGoogle Scholar
  102. Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660. doi:10.1016/j.ajhg.2010.09.013 PubMedCentralPubMedGoogle Scholar
  103. Crow YJ, Hayward BE, Parmar R et al (2006a) Mutations in the gene encoding the 3 “-5” DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 38:917–920. doi:10.1038/ng1845 PubMedGoogle Scholar
  104. Crow YJ, Leitch A, Hayward BE et al (2006b) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38:910–916. doi:10.1038/ng1842 PubMedGoogle Scholar
  105. Curry S, Kotik-Kogan O, Conte MR, Brick P (2009) Getting to the end of RNA: structural analysis of protein recognition of 5′ and 3′ termini. Biochim Biophys Acta 1789:653–666. doi:10.1016/j.bbagrm.2009.07.003 PubMedGoogle Scholar
  106. Czeschik JC, Voigt C, Alanay Y et al (2013) Clinical and mutation data in 12 patients with the clinical diagnosis of Nager syndrome. Hum Genet 132:885–898. doi:10.1007/s00439-013-1295-2 PubMedGoogle Scholar
  107. Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141. doi:10.1111/cge.12203 PubMedGoogle Scholar
  108. de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198Google Scholar
  109. Dean M, Park M, Vande Woude GF (1987) Characterization of the rearranged tpr-met oncogene breakpoint. Mol Cell Biol 7:921–924PubMedCentralPubMedGoogle Scholar
  110. Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599. doi:10.1016/j.gde.2009.09.008 PubMedGoogle Scholar
  111. DeHoratius RJ, Pillarisetty R, Messner RP, Talal N (1975) Anti-nucleic acid antibodies in systemic lupus erythematosus patients and their families. Incidence and correlation with lymphocytotoxic antibodies. J Clin Invest 56:1149–1154. doi:10.1172/JCI108190 PubMedCentralPubMedGoogle Scholar
  112. Delépine M, Nicolino M, Barrett T et al (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409. doi:10.1038/78085 PubMedGoogle Scholar
  113. Dever TE, Green R (2012) The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harbor Pers Biol 4:a013706. doi:10.1101/cshperspect.a013706 Google Scholar
  114. Devys D, Biancalana V, Rousseau F et al (1992) Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am J Med Genet 43:208–216PubMedGoogle Scholar
  115. Dezso Z, Nikolsky Y, Sviridov E et al (2008) A comprehensive functional analysis of tissue specificity of human gene expression. BMC Biol 6:49. doi:10.1186/1741-7007-6-49 PubMedCentralPubMedGoogle Scholar
  116. Doherty L, Sheen MR, Vlachos A et al (2010) Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet 86:222–228. doi:10.1016/j.ajhg.2009.12.015 PubMedCentralPubMedGoogle Scholar
  117. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329. doi:10.1038/nrd1345 PubMedGoogle Scholar
  118. Drake KM, Zygmunt D, Mavrakis L et al (2011) Altered MicroRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am J Respir Crit Care Med 184:1400–1408. doi:10.1164/rccm.201106-1130OC PubMedCentralPubMedGoogle Scholar
  119. Draptchinskaia N, Gustavsson P, Andersson B et al (1999) The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 21:169–175. doi:10.1038/5951 PubMedGoogle Scholar
  120. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205. doi:10.1038/nrm760 PubMedGoogle Scholar
  121. Du X, Rao MRKS, Chen XQ et al (2006) The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol Biol Cell 17:460–474. doi:10.1091/mbc.E05-09-0848 PubMedCentralPubMedGoogle Scholar
  122. Dumitrescu AM, Liao X-H, Abdullah MSY et al (2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37:1247–1252. doi:10.1038/ng1654 PubMedGoogle Scholar
  123. Durocher F, Faure R, Labrie Y et al (2006) A novel mutation in the EIF2AK3 gene with variable expressivity in two patients with Wolcott-Rallison syndrome. Clin Genet 70:34–38. doi:10.1111/j.1399-0004.2006.00632.x PubMedGoogle Scholar
  124. Echeverria GV, Cooper TA (2012) RNA-binding proteins in microsatellite expansion disorders: Mediators of RNA toxicity. Brain Res 1462:100–111. doi:10.1016/j.brainres.2012.02.030 PubMedCentralPubMedGoogle Scholar
  125. Edvardson S, Shaag A, Kolesnikova O et al (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862. doi:10.1086/521227 PubMedCentralPubMedGoogle Scholar
  126. Egan ED, Collins K (2012) Biogenesis of telomerase ribonucleoproteins. RNA 18:1747–1759. doi:10.1261/rna.034629.112 PubMedCentralPubMedGoogle Scholar
  127. Elden AC, Kim H-J, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075. doi:10.1038/nature09320 PubMedCentralPubMedGoogle Scholar
  128. Ellis JC, Brown JW (2009) The RNase P family. RNA Biol 6:362–369PubMedGoogle Scholar
  129. Elo JM, Yadavalli SS, Euro L et al (2012) Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Hum Mol Genet 21:4521–4529. doi:10.1093/hmg/dds294 PubMedGoogle Scholar
  130. Esakova O, Krasilnikov AS (2010) Of proteins and RNA: The RNase P/MRP family. RNA 16:1725–1747. doi:10.1261/rna.2214510 PubMedCentralPubMedGoogle Scholar
  131. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi:10.1038/nrc1840 PubMedGoogle Scholar
  132. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. doi:10.1038/nrg3074 PubMedGoogle Scholar
  133. Fabre A, Charroux B, Martinez-Vinson C et al (2012) SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 90:689–692. doi:10.1016/j.ajhg.2012.02.009 PubMedCentralPubMedGoogle Scholar
  134. Fabrizio P, Laggerbauer B, Lauber J et al (1997) An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J 16:4092–4106. doi:10.1093/emboj/16.13.4092 PubMedCentralPubMedGoogle Scholar
  135. Faehnle CR, Elkayam E, Haase AD et al (2013) The making of a slicer: activation of human argonaute-1. Cell Rep 3:1901–1909. doi:10.1016/j.celrep.2013.05.033 PubMedCentralPubMedGoogle Scholar
  136. Fairman-Williams ME, Guenther U-P, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324. doi:10.1016/j.sbi.2010.03.011 PubMedCentralPubMedGoogle Scholar
  137. Fardaei M (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11:805–814. doi:10.1093/hmg/11.7.805 PubMedGoogle Scholar
  138. Farrar JE, Nater M, Caywood E et al (2008) Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood 112:1582–1592. doi:10.1182/blood-2008-02-140012 PubMedCentralPubMedGoogle Scholar
  139. Feinstein M, Markus B, Noyman I et al (2010) Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 87:820–828. doi:10.1016/j.ajhg.2010.10.016 PubMedCentralPubMedGoogle Scholar
  140. Fernandez-Vizarra E, Berardinelli A, Valente L et al (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180. doi:10.1136/jmg.2006.045252 PubMedCentralPubMedGoogle Scholar
  141. Filipowicz W, Pogacić V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327. doi:10.1016/s0955-0674(02)00334-4 PubMedGoogle Scholar
  142. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222. doi:10.1093/nar/gkp985 PubMedCentralPubMedGoogle Scholar
  143. Fogli A, Wong K, Eymard-Pierre E et al (2002) Cree leukoencephalopathy and CACH/VWM disease are allelic at the EIF2B5 locus. Ann Neurol 52:506–510. doi:10.1002/ana.10339 PubMedGoogle Scholar
  144. Foulkes WD, Bahubeshi A, Hamel N et al (2011) Extending the phenotypes associated with DICER1 mutations. Hum Mutat 32:1381–1384. doi:10.1002/humu.21600 PubMedGoogle Scholar
  145. Freude K, Hoffmann K, Jensen L-R et al (2004) Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am J Hum Genet 75:305–309. doi:10.1086/422507 PubMedCentralPubMedGoogle Scholar
  146. Frost RJA, Hamra FK, Richardson JA et al (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci U S A 107:11847–11852. doi:10.1073/pnas.1007158107 PubMedCentralPubMedGoogle Scholar
  147. Fukuda T, Yamagata K, Fujiyama S et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611. doi:10.1038/ncb1577 PubMedGoogle Scholar
  148. Fullam A, Schröder M (2013) DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta 1829:854–865. doi:10.1016/j.bbagrm.2013.03.012 PubMedGoogle Scholar
  149. Gaipl US, Voll RE, Sheriff A et al (2005) Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev 4:189–194. doi:10.1016/j.autrev.2004.10.007 PubMedGoogle Scholar
  150. Galante PAF, Sandhu D, de Sousa Abreu R et al (2009) A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue: Identification of potential players in tumor formation. RNA Biol 6:426–433. doi:10.4161/rna.6.4.8841 PubMedCentralPubMedGoogle Scholar
  151. Galmiche L, Serre V, Beinat M et al (2011) Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 32:1225–1231. doi:10.1002/humu.21562 PubMedGoogle Scholar
  152. Gambardella A, Mazzei R, Toscano A et al (1998) Spinal muscular atrophy due to an isolated deletion of exon 8 of the telomeric survival motor neuron gene. Ann Neurol 44:836–839. doi:10.1002/ana.410440522 PubMedGoogle Scholar
  153. Gamberi C, Johnstone O, Lasko P (2006) Drosophila RNA binding proteins. Int Rev Cytol 248:43–139. doi:10.1016/S0074-7696(06)48002-5 PubMedGoogle Scholar
  154. Gazda HT, Grabowska A, Merida-Long LB et al (2006) Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 79:1110–1118. doi:10.1086/510020 PubMedCentralPubMedGoogle Scholar
  155. Gazda HT, Sheen MR, Vlachos A et al (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83:769–780. doi:10.1016/j.ajhg.2008.11.004 PubMedCentralPubMedGoogle Scholar
  156. Gedeon AK, Baker E, Robinson H et al (1992) Fragile X syndrome without CCG amplification has an FMR1 deletion. Nat Genet 1:341–344. doi:10.1038/ng0892-341 PubMedGoogle Scholar
  157. Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL (1992) Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci U S A 89:9739–9743PubMedCentralPubMedGoogle Scholar
  158. Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087. doi:10.1016/j.ajhg.2012.04.011 PubMedCentralPubMedGoogle Scholar
  159. Gibson WT, Hood RL, Zhan SH et al (2012) Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet 90:110–118. doi:10.1016/j.ajhg.2011.11.018 PubMedCentralPubMedGoogle Scholar
  160. Gill S, McManus AP, Crew AJ et al (1995) Fusion of the EWS gene to a DNA segment from 9q22-31 in a human myxoid chondrosarcoma. Genes Chromosome Cancer 12:307–310Google Scholar
  161. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963PubMedGoogle Scholar
  162. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202. doi:10.1038/nature04917 PubMedGoogle Scholar
  163. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986PubMedCentralPubMedGoogle Scholar
  164. Gold HA, Craft J, Hardin JA et al (1988) Antibodies in human serum that precipitate ribonuclease P. Proc Natl Acad Sci U S A 85:5483–5487PubMedCentralPubMedGoogle Scholar
  165. Gonzatti-Haces M, Seth A, Park M et al (1988) Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci U S A 85:21–25PubMedCentralPubMedGoogle Scholar
  166. Gordon CT, Petit F, Oufadem M et al (2012) EFTUD2 haploinsufficiency leads to syndromic oesophageal atresia. J Med Genet 49:737–746. doi:10.1136/jmedgenet-2012-101173 PubMedGoogle Scholar
  167. Götz A, Tyynismaa H, Euro L et al (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642. doi:10.1016/j.ajhg.2011.04.006 PubMedCentralPubMedGoogle Scholar
  168. Grabowski P (2011) Alternative splicing takes shape during neuronal development. Curr Opin Genet Dev 21:388–394. doi:10.1016/j.gde.2011.03.005 PubMedGoogle Scholar
  169. Granneman S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296:43–50. doi:10.1016/j.yexcr.2004.03.016 PubMedGoogle Scholar
  170. Graubert TA, Shen D, Ding L et al (2012) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 44:53–57. doi:10.1038/ng.1031 Google Scholar
  171. Greenway MJ, Andersen PM, Russ C et al (2006) ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat Genet 38:411–413. doi:10.1038/ng1742 PubMedGoogle Scholar
  172. Griffin JH, Leung J, Bruner RJ et al (2003) Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A 100:7830–7835. doi:10.1073/pnas.0932698100 PubMedCentralPubMedGoogle Scholar
  173. Grishin NV (2001) KH domain: one motif, two folds. Nucleic Acids Res 29:638–643PubMedCentralPubMedGoogle Scholar
  174. Grivna ST (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714. doi:10.1101/gad.1434406 PubMedCentralPubMedGoogle Scholar
  175. Grohmann K, Schuelke M, Diers A et al (2001) Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet 29:75–77. doi:10.1038/ng703 PubMedGoogle Scholar
  176. Guan M-X, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302. doi:10.1086/506389 PubMedCentralPubMedGoogle Scholar
  177. Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51–56. doi:10.1016/j.yexcr.2004.03.022 PubMedGoogle Scholar
  178. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. doi:10.1038/nature09267 PubMedCentralPubMedGoogle Scholar
  179. Guo W, Schafer S, Greaser ML et al (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18:766–773. doi:10.1038/nm.2693 PubMedCentralPubMedGoogle Scholar
  180. Gwinn-Hardy K, Chen JY, Liu HC et al (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55:800–805PubMedGoogle Scholar
  181. Haack TB, Gorza M, Danhauser K et al (2014) Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab 111:342–352. doi:10.1016/j.ymgme.2013.12.010 PubMedGoogle Scholar
  182. Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 Mutations Cause a Mitochondrial RNA Processing Defect Associated with Hypertrophic Cardiomyopathy. Am J Hum Genet 93:211–223. doi:10.1016/j.ajhg.2013.06.006 PubMedCentralPubMedGoogle Scholar
  183. Hackman P, Sarparanta J, Lehtinen S et al (2012) Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73:500–509. doi:10.1002/ana.23831 Google Scholar
  184. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141:129–141. doi:10.1016/j.cell.2010.03.009 PubMedCentralPubMedGoogle Scholar
  185. Hafner M, Max KEA, Bandaru P et al (2013) Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 19:613–626. doi:10.1261/rna.036491.112 PubMedCentralPubMedGoogle Scholar
  186. Hagerman P (2013) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126:1–19. doi:10.1007/s00401-013-1138-1 PubMedCentralPubMedGoogle Scholar
  187. Hagerman RJ, Leehey M, Heinrichs W et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130PubMedGoogle Scholar
  188. Hahnen E, Schönling J, Rudnik-Schöneborn S et al (1997) Missense mutations in exon 6 of the survival motor neuron gene in patients with spinal muscular atrophy (SMA). Hum Mol Genet 6:821–825PubMedGoogle Scholar
  189. Hall AE, Turnbull C, Dalmay T (2013) Y RNAs: recent developments. BioMol Concepts 4:103–110Google Scholar
  190. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. doi:10.1038/35005107 PubMedGoogle Scholar
  191. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517. doi:10.1093/nar/gki033 PubMedCentralPubMedGoogle Scholar
  192. Hanson KA, Kim SH, Tibbetts RS (2011) RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. WIREs RNA 3:265–285. doi:10.1002/wrna.111 PubMedCentralPubMedGoogle Scholar
  193. Harms MB, Ori-McKenney KM, Scoto M et al (2012) Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78:1714–1720. doi:10.1212/WNL.0b013e3182556c05 PubMedCentralPubMedGoogle Scholar
  194. Hauptmann J, Dueck A, Harlander S et al (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 20:814–817. doi:10.1038/nsmb.2577 PubMedGoogle Scholar
  195. Hayashi YK, Matsuda C, Ogawa M et al (2009) Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119:2623–2633. doi:10.1172/JCI38660 PubMedCentralPubMedGoogle Scholar
  196. Heiss NS, Knight SW, Vulliamy TJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38. doi:10.1038/ng0598-32 PubMedGoogle Scholar
  197. Hekman KE, Yu G-Y, Brown CD et al (2012) A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 21:5472–5483. doi:10.1093/hmg/dds392 PubMedCentralPubMedGoogle Scholar
  198. Hendrick JP, Wolin SL, Rinke J et al (1981) Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1:1138–1149PubMedCentralPubMedGoogle Scholar
  199. Henikoff S, Greene EA, Pietrokovski S et al (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278:609–614PubMedGoogle Scholar
  200. Henneke M, Diekmann S, Ohlenbusch A et al (2009) RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection. Nat Genet 41:773–775. doi:10.1038/ng.398 PubMedGoogle Scholar
  201. Hill DA, Ivanovich J, Priest JR et al (2009) DICER1 mutations in familial pleuropulmonary blastoma. Science 325:965. doi:10.1126/science.1174334 PubMedCentralPubMedGoogle Scholar
  202. Hogan DJ, Riordan DP, Gerber AP et al (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255. doi:10.1371/journal.pbio.0060255 PubMedCentralPubMedGoogle Scholar
  203. Hogg JR, Goff SP (2010) Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143:379–389. doi:10.1016/j.cell.2010.10.005 PubMedCentralPubMedGoogle Scholar
  204. Howe JR, Roth S, Ringold JC et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088PubMedGoogle Scholar
  205. Huppke P, Laccone F, Krämer N et al (2000) Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum Mol Genet 9:1369–1375PubMedGoogle Scholar
  206. Hussain S, Sajini AA, Blanco S et al (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261. doi:10.1016/j.celrep.2013.06.029 PubMedCentralPubMedGoogle Scholar
  207. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. doi:10.1038/nrm2321 PubMedGoogle Scholar
  208. Ichikawa H, Shimizu K, Hayashi Y, Ohki M (1994) An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54:2865–2868PubMedGoogle Scholar
  209. IJlst L, Loupatty FJ, IRuiter JPN et al (2002) 3-Methylglutaconic aciduria type I is caused by mutations in AUH. Am J Hum Genet 71:1463–1466. doi:10.1086/344712 PubMedCentralPubMedGoogle Scholar
  210. Ishizu H, Siomi H, Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26:2361–2373. doi:10.1101/gad.203786.112 PubMedCentralPubMedGoogle Scholar
  211. Ivanov P, Emara MM, Villen J et al (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613–623. doi:10.1016/j.molcel.2011.06.022 PubMedCentralPubMedGoogle Scholar
  212. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36:19–29. doi:10.1016/j.tibs.2010.07.008 PubMedCentralPubMedGoogle Scholar
  213. Jankowsky E, Fairman-Williams ME (2010) An introduction to RNA helicases: superfamilies, families, and major themes. In: Jankowsky E (ed) RNA helicases, vol 19. RSC Biomolecular Sciences, London, pp 1–31Google Scholar
  214. Jarrous N (2002) Human ribonuclease P: subunits, function, and intranuclear localization. RNA 8:1–7PubMedCentralPubMedGoogle Scholar
  215. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412. doi:10.1038/nature07755 PubMedGoogle Scholar
  216. Johnston JJ, Teer JK, Cherukuri PF et al (2010) Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am J Hum Genet 86:743–748. doi:10.1016/j.ajhg.2010.04.007 PubMedCentralPubMedGoogle Scholar
  217. Jordanova A, Irobi J, Thomas FP et al (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38:197–202. doi:10.1038/ng1727 PubMedGoogle Scholar
  218. Kaida D, Berg MG, Younis I et al (2010) U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468:664–668. doi:10.1038/nature09479 PubMedCentralPubMedGoogle Scholar
  219. Kalscheuer VM, Freude K, Musante L et al (2003) Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nat Genet 35:313–315. doi:10.1038/ng1264 PubMedGoogle Scholar
  220. Kanegane H, Kasahara Y, Okamura J et al (2005) Identification of DKC1 gene mutations in Japanese patients with X-linked dyskeratosis congenita. Br J Haematol 129:432–434. doi:10.1111/j.1365-2141.2005.05473.x PubMedGoogle Scholar
  221. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCentralPubMedGoogle Scholar
  222. Kaneko H, Dridi S, Tarallo V et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330. doi:10.1038/nature09830 PubMedCentralPubMedGoogle Scholar
  223. Kapeli K, Yeo GW (2012) Genome-wide approaches to dissect the roles of RNA binding proteins in translational control: implications for neurological diseases. Front Neurosci 6:144. doi:10.3389/fnins.2012.00144 PubMedCentralPubMedGoogle Scholar
  224. Karaca E, Weitzer S, Pehlivan D et al (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157:636–650. doi:10.1016/j.cell.2014.02.058 PubMedGoogle Scholar
  225. Kaymak E, Wee LM, Ryder SP (2010) Structure and function of nematode RNA-binding proteins. Curr Opin Struct Biol 20:305–312. doi:10.1016/j.sbi.2010.03.010 PubMedCentralPubMedGoogle Scholar
  226. Keen TJ, Hims MM, McKie AB et al (2002) Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet 10:245–249. doi:10.1038/sj.ejhg.5200797 PubMedGoogle Scholar
  227. Kerner P, Degnan SM, Marchand L et al (2011) Evolution of RNA-binding proteins in animals: insights from genome-wide analysis in the sponge Amphimedon queenslandica. Mol Biol Evol 28:2289–2303. doi:10.1093/molbev/msr046 PubMedGoogle Scholar
  228. Khan MA, Rafiq MA, Noor A et al (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90:856–863. doi:10.1016/j.ajhg.2012.03.023 PubMedCentralPubMedGoogle Scholar
  229. Khusial P, Plaag R, Zieve GW (2005) LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem Sci 30:522–528. doi:10.1016/j.tibs.2005.07.006 PubMedGoogle Scholar
  230. Kim CA, Bowie JU (2003) SAM domains: uniform structure, diversity of function. Trends Biochem Sci 28:625–628. doi:10.1016/j.tibs.2003.11.001 PubMedGoogle Scholar
  231. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. doi:10.1038/nrm2632 PubMedGoogle Scholar
  232. Kim HJ, Kim NC, Wang Y-D et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. doi:10.1038/nature11922PubMedCentralPubMedGoogle Scholar
  233. Kirwan M, Walne AJ, Plagnol V et al (2012) Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am J Hum Genet 90:888–892. doi:10.1016/j.ajhg.2012.03.020 PubMedCentralPubMedGoogle Scholar
  234. Kiss T (2004) Biogenesis of small nuclear RNPs. J Cell Sci 117:5949–5951. doi:10.1242/jcs.01487 PubMedGoogle Scholar
  235. Kiss T, Fayet E, Jády BE et al (2006) Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harbor Symp Quant Biol 71:407–417. doi:10.1101/sqb.2006.71.025 PubMedGoogle Scholar
  236. Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135:3–9. doi:10.1242/dev.006486 PubMedGoogle Scholar
  237. Klauck SM, Felder B, Kolb-Kokocinski A et al (2006) Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 11:1073–1084. doi:10.1038/sj.mp.4001883 PubMedGoogle Scholar
  238. Klein CJ, Botuyan M-V, Wu Y et al (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43:595–600. doi:10.1038/ng.830 PubMedCentralPubMedGoogle Scholar
  239. Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450. doi:10.1016/j.devcel.2006.09.009 PubMedGoogle Scholar
  240. Knight SJL, Flannery AV, Hirst MC et al (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74:127–134. doi:10.1016/0092-8674(93)90300-F PubMedGoogle Scholar
  241. Knight SW, Heiss NS, Vulliamy TJ et al (1999) X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet 65:50–58. doi:10.1086/302446 PubMedCentralPubMedGoogle Scholar
  242. Knight SW, Vulliamy TJ, Morgan B et al (2001) Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis. Hum Genet 108:299–303PubMedGoogle Scholar
  243. Kobayashi H, Abe K, Matsuura T et al (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89:121–130. doi:10.1016/j.ajhg.2011.05.015 PubMedCentralPubMedGoogle Scholar
  244. Köhn M, Pazaitis N, Hüttelmaier S (2013) Why YRNAs? About versatile RNAs and their functions. Biomolecules 3:143–156. doi:10.3390/biom3010143 PubMedCentralPubMedGoogle Scholar
  245. Kornblihtt AR, Schor IE, Allo M et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165. doi:10.1038/nrm3525 PubMedGoogle Scholar
  246. Korobeinikova AV, Garber MB, Gongadze GM (2012) Ribosomal proteins: structure, function, and evolution. Biochem (Mosc) 77:562–574. doi:10.1134/S0006297912060028 Google Scholar
  247. Kraus MR-C, Clauin S, Pfister Y et al (2012) Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum Mutat 33:86–90. doi:10.1002/humu.21610 PubMedGoogle Scholar
  248. Kremer EJ, Pritchard M, Lynch M et al (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714PubMedGoogle Scholar
  249. Kressler D, Hurt E, Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803:673–683. doi:10.1016/j.bbamcr.2009.10.009 PubMedGoogle Scholar
  250. Kuchta K, Knizewski L, Wyrwicz LS et al (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37:7701–7714. doi:10.1093/nar/gkp854 PubMedCentralPubMedGoogle Scholar
  251. Kufel J, Bousquet-Antonelli C, Beggs JD, Tollervey D (2004) Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2-8p complex. Mol Cell Biol 24:9646–9657. doi:10.1128/MCB.24.21.9646-9657.2004 PubMedCentralPubMedGoogle Scholar
  252. Kwiatkowski TJ, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi:10.1126/science.1166066 PubMedGoogle Scholar
  253. Kwon SC, Yi H, Eichelbaum K et al (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130. doi:10.1038/nsmb.2638 PubMedGoogle Scholar
  254. Lachke SA, Alkuraya FS, Kneeland SC et al (2011) Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 331:1571–1576. doi:10.1126/science.1195970 PubMedCentralPubMedGoogle Scholar
  255. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. doi:10.1093/hmg/ddq137 PubMedCentralPubMedGoogle Scholar
  256. Larroux C, Luke GN, Koopman P et al (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996. doi:10.1093/molbev/msn047 PubMedGoogle Scholar
  257. Lasko P (2000) The Drosophila melanogaster genome: translation factors and RNA binding proteins. J Cell Biol 150:F51–F56PubMedGoogle Scholar
  258. Lasko P (2003) Gene regulation at the RNA layer: RNA binding proteins in intercellular signaling networks. Sci STKE 2003:RE6. doi:10.1126/stke.2003.179.re6 PubMedGoogle Scholar
  259. Lasko P (2013) The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. Biochim Biophys Acta 1829:810–816. doi:10.1016/j.bbagrm.2013.04.005 PubMedGoogle Scholar
  260. Latour P, Thauvin-Robinet C, Baudelet-Méry C et al (2010) A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 86:77–82. doi:10.1016/j.ajhg.2009.12.005 PubMedCentralPubMedGoogle Scholar
  261. Lee M-H, Schedl T (2006) RNA-binding proteins. WormBook 1–13. doi: 10.1895/wormbook.1.79.1Google Scholar
  262. Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804. doi:10.1126/science.1075090 PubMedGoogle Scholar
  263. Lee Y, Ahn C, Han JJ et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419. doi:10.1038/nature01957 PubMedGoogle Scholar
  264. Lee EB, Lee VMY, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50. doi:10.1038/nrn3121 Google Scholar
  265. Leegwater PA, Vermeulen G, Könst AA et al (2001) Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet 29:383–388. doi:10.1038/ng764 PubMedGoogle Scholar
  266. Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedGoogle Scholar
  267. Lerner MR, Boyle JA, Hardin JA, Steitz JA (1981) Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211:400–402PubMedGoogle Scholar
  268. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232. doi:10.1093/nar/gkn808 PubMedCentralPubMedGoogle Scholar
  269. Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. Genom Proteom Bioinform 10:246–253. doi:10.1016/j.gpb.2012.07.005 Google Scholar
  270. Li Q, Lee J-A, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8:819–831. doi:10.1038/nrn2237 PubMedGoogle Scholar
  271. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201:361–372. doi:10.1083/jcb.201302044 PubMedCentralPubMedGoogle Scholar
  272. Lin K-P, Soong B-W, Yang C-C et al (2011) The mutational spectrum in a cohort of Charcot-Marie-Tooth disease type 2 among the Han Chinese in Taiwan. PLoS One 6:e29393. doi:10.1371/journal.pone.0029393 PubMedCentralPubMedGoogle Scholar
  273. Linder P, Fuller-Pace FV (2013) Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta 1829:750–755. doi:10.1016/j.bbagrm.2013.03.007 PubMedGoogle Scholar
  274. Linder P, Jankowsky E (2011) From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516. doi:10.1038/nrm3154 PubMedGoogle Scholar
  275. Lines MA, Huang L, Schwartzentruber J et al (2012) Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 90:369–377. doi:10.1016/j.ajhg.2011.12.023 PubMedCentralPubMedGoogle Scholar
  276. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. doi:10.1016/j.neuron.2013.07.033PubMedGoogle Scholar
  277. Liquori CL, Ricker K, Moseley ML et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867. doi:10.1126/science.1062125 PubMedGoogle Scholar
  278. Liu J (2004) Argonaute2 Is the catalytic engine of Mammalian RNAi. Science 305:1437–1441. doi:10.1126/science.1102513 PubMedGoogle Scholar
  279. Liu JM (2006) Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107:4583–4588. doi:10.1182/blood-2005-12-4831 PubMedGoogle Scholar
  280. Liu G, Grant WM, Persky D et al (2002) Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell 13:579–592. doi:10.1091/mbc.01-03-0140 PubMedCentralPubMedGoogle Scholar
  281. Liu-Yesucevitz L, Bassell GJ, Gitler AD et al (2011) Local RNA translation at the synapse and in disease. J Neurosci 31:16086–16093. doi:10.1523/JNEUROSCI.4105-11.2011 PubMedCentralPubMedGoogle Scholar
  282. Lovci MT, Ghanem D, Marr H et al (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat Struct Mol Biol 20:1434–1442. doi:10.1038/nsmb.2699 PubMedCentralPubMedGoogle Scholar
  283. Lukong KE, Chang KW, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425. doi:10.1016/j.tig.2008.05.004 PubMedGoogle Scholar
  284. Lund E (2004) Nuclear export of MicroRNA precursors. Science 303:95–98. doi:10.1126/science.1090599 PubMedGoogle Scholar
  285. Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490. doi:10.1038/nrm2178 PubMedGoogle Scholar
  286. Ly TBN, Peters V, Gibson KM et al (2003) Mutations in the AUH gene cause 3-methylglutaconic aciduria type I. Hum Mutat 21:401–407. doi:10.1002/humu.10202 PubMedGoogle Scholar
  287. Mankodi A, Urbinati CR, Yuan QP et al (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 10:2165–2170PubMedGoogle Scholar
  288. Maraia RJ, Bayfield MA (2006) The La protein-RNA complex surfaces. Mol Cell 21:149–152. doi:10.1016/j.molcel.2006.01.004 PubMedGoogle Scholar
  289. Maraia RJ, Lamichhane TN (2011) 3′ processing of eukaryotic precursor tRNAs. WIREs RNA 2:362–375. doi:10.1002/wrna.64 PubMedCentralPubMedGoogle Scholar
  290. Marchler-Bauer A, Anderson JB, DeWeese-Scott C et al (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387PubMedCentralPubMedGoogle Scholar
  291. Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131. doi:10.1111/j.1742-4658.2005.04653.x PubMedGoogle Scholar
  292. Marrone A, Walne A, Tamary H et al (2007) Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 110:4198–4205. doi:10.1182/blood-2006-12-062851 PubMedCentralPubMedGoogle Scholar
  293. Marszalek B, Wisniewski SA, Wojcicki P et al (2003) Novel mutation in the 5’ splice site of exon 4 of the TCOF1 gene in the patient with Treacher Collins syndrome. Am J Med Genet 123A:169–171. doi:10.1002/ajmg.a.20312 PubMedGoogle Scholar
  294. Martin CL, Duvall JA, Ilkin Y et al (2007) Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am J Med Genet B Neuropsychiatr Genet 144B:869–876. doi:10.1002/ajmg.b.30530 PubMedGoogle Scholar
  295. Martin R, Straub AU, Doebele C, Bohnsack MT (2013) DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 10:4–18. doi:10.4161/rna.21879 PubMedCentralPubMedGoogle Scholar
  296. Masliah G, Barraud P, Allain FHT (2013) RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 70:1875–1895. doi:10.1007/s00018-012-1119-x PubMedCentralPubMedGoogle Scholar
  297. Massart A, Lissens W, Tournaye H, Stouffs K (2012) Genetic causes of spermatogenic failure. Asian J Androl 14:40–48. doi:10.1038/aja.2011.67 PubMedCentralPubMedGoogle Scholar
  298. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220. doi:10.1038/nrm2124 PubMedGoogle Scholar
  299. Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398. doi:10.1038/nrm1645 PubMedGoogle Scholar
  300. Matsson H, Klar J, Draptchinskaia N et al (1999) Truncating ribosomal protein S19 mutations and variable clinical expression in Diamond-Blackfan anemia. Hum Genet 105:496–500PubMedGoogle Scholar
  301. Matthews DE, Hessler RA, Denslow ND et al (1982) Protein composition of the bovine mitochondrial ribosome. J Biol Chem 257:8788–8794PubMedGoogle Scholar
  302. May WA, Gishizky ML, Lessnick SL et al (1993) Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A 90:5752–5756PubMedCentralPubMedGoogle Scholar
  303. Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684. doi:10.1016/j.cell.2009.06.016 PubMedCentralPubMedGoogle Scholar
  304. McKee AE, Minet E, Stern C et al (2005) A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol 5:14. doi:10.1186/1471-213X-5-14 PubMedCentralPubMedGoogle Scholar
  305. McKie AB, McHale JC, Keen TJ et al (2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10:1555–1562PubMedGoogle Scholar
  306. McLaughlin HM, Sakaguchi R, Liu C et al (2010) Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87:560–566. doi:10.1016/j.ajhg.2010.09.008 PubMedCentralPubMedGoogle Scholar
  307. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. doi:10.1016/j.molcel.2004.07.007 PubMedGoogle Scholar
  308. Melnikov S, Ben-Shem A, Garreau de Loubresse N et al (2012) One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 19:560–567. doi:10.1038/nsmb.2313 PubMedGoogle Scholar
  309. Melo SA, Ropero S, Moutinho C et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370. doi:10.1038/ng.317 PubMedGoogle Scholar
  310. Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor micrornas in the nucleus of cancer cells. Cancer Cell 18:303–315. doi:10.1016/j.ccr.2010.09.007 PubMedGoogle Scholar
  311. Merritt WM, Lin YG, Han LY et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359:2641–2650. doi:10.1056/NEJMoa0803785 PubMedCentralPubMedGoogle Scholar
  312. Mickleburgh I, Chabanon H, Nury D et al (2006) Elongation factor 1alpha binds to the region of the metallothionein-1 mRNA implicated in perinuclear localization–importance of an internal stem-loop. RNA 12:1397–1407. doi:10.1261/rna.2730106 PubMedCentralPubMedGoogle Scholar
  313. Mihailovich M, Militti C, Gabaldón T, Gebauer F (2010) Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 32:109–118. doi:10.1002/bies.200900122 PubMedGoogle Scholar
  314. Miki T, Takano K, Yoneda Y (2005) The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function. Cell Struct Funct 30:51–56PubMedGoogle Scholar
  315. Miller JW (2000) Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J 19:4439–4448. doi:10.1093/emboj/19.17.4439 PubMedCentralPubMedGoogle Scholar
  316. Miller C, Saada A, Shaul N et al (2004) Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56:734–738. doi:10.1002/ana.20282 PubMedGoogle Scholar
  317. Mitchell SF, Jain S, She M, Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20:127–133. doi:10.1038/nsmb.2468 PubMedCentralPubMedGoogle Scholar
  318. Miura P, Shenker S, Andreu-Agullo C et al (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res 23:812–825. doi:10.1101/gr.146886.112 PubMedCentralPubMedGoogle Scholar
  319. Miyamura Y, Suzuki T, Kono M et al (2003) Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 73:693–699. doi:10.1086/378209 PubMedCentralPubMedGoogle Scholar
  320. Monemi S, Spaeth G, DaSilva A et al (2005) Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 14:725–733. doi:10.1093/hmg/ddi068 PubMedGoogle Scholar
  321. Monti L, Rodolfo M, Rudolfo M et al (2008) RNASET2 as a tumor antagonizing gene in a melanoma cancer model. Oncol Res 17:69–74PubMedGoogle Scholar
  322. Mootha VK, Lepage P, Miller K et al (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100:605–610. doi:10.1073/pnas.242716699 PubMedCentralPubMedGoogle Scholar
  323. Moreira M-C, Klur S, Watanabe M et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36:225–227. doi:10.1038/ng1303 PubMedGoogle Scholar
  324. Müller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 14:275–287. doi:10.1038/nrg3434 PubMedGoogle Scholar
  325. Muñoz LE, Lauber K, Schiller M et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6:280–289. doi:10.1038/nrrheum.2010.46 PubMedGoogle Scholar
  326. Murray A, Webb J, Grimley S et al (1998) Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet 35:637–640PubMedCentralPubMedGoogle Scholar
  327. Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867PubMedCentralPubMedGoogle Scholar
  328. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540. doi:10.1006/jmbi.1995.0159 PubMedGoogle Scholar
  329. Muscatelli F, Strom TM, Walker AP et al (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372:672–676. doi:10.1038/372672a0 PubMedGoogle Scholar
  330. Muto Y, Yokoyama S (2012) Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WIREs RNA 3:229–246. doi:10.1002/wrna.1107 PubMedGoogle Scholar
  331. Nakanishi K, Ascano M, Gogakos T et al (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3:1893–1900. doi:10.1016/j.celrep.2013.06.010 PubMedCentralPubMedGoogle Scholar
  332. Nakashima E, Mabuchi A, Makita Y et al (2004) Novel SBDS mutations caused by gene conversion in Japanese patients with Shwachman-Diamond syndrome. Hum Genet 114:345–348. doi:10.1007/s00439-004-1081-2 PubMedGoogle Scholar
  333. Narla A, Ebert BL (2010) Ribosomopathies: human disorders of ribosome dysfunction. Blood 115:3196–3205. doi:10.1182/blood-2009-10-178129 PubMedCentralPubMedGoogle Scholar
  334. Nasim MT, Ogo T, Ahmed M et al (2011) Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat 32:1385–1389. doi:10.1002/humu.21605 PubMedGoogle Scholar
  335. Nawrot B, Sochacka E, Düchler M (2011) tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci 68:4023–4032. doi:10.1007/s00018-011-0773-8 PubMedCentralPubMedGoogle Scholar
  336. Neeve VCM, Pyle A, Boczonadi V et al (2013) Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT. Mitochondrion 13:743–748. doi:10.1016/j.mito.2013.03.002 PubMedCentralPubMedGoogle Scholar
  337. Negrutskii BS, El’skaya AV (1998) Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol 60:47–78PubMedGoogle Scholar
  338. Neilson DE, Adams MD, Orr CMD et al (2009) Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet 84:44–51. doi:10.1016/j.ajhg.2008.12.009 PubMedCentralPubMedGoogle Scholar
  339. Nelson DL, Orr HT, Warren ST (2013) The unstable repeats—three evolving faces of neurological disease. Neuron 77:825–843. doi:10.1016/j.neuron.2013.02.022 PubMedCentralPubMedGoogle Scholar
  340. Nissen P, Kjeldgaard M, Thirup S et al (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–1472PubMedGoogle Scholar
  341. Nousbeck J, Spiegel R, Ishida-Yamamoto A et al (2008) Alopecia, neurological defects, and endocrinopathy syndrome caused by decreased expression of RBM28, a nucleolar protein associated with ribosome biogenesis. Am J Hum Genet 82:1114–1121. doi:10.1016/j.ajhg.2008.03.014 PubMedCentralPubMedGoogle Scholar
  342. Nousiainen HO, Kestila M, Pakkasjarvi N et al (2008) Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet 40:155–157. doi:10.1038/ng.2007.65 PubMedCentralPubMedGoogle Scholar
  343. O’Brien TW (2003) Properties of human mitochondrial ribosomes. IUBMB Life 55:505–513. doi:10.1080/15216540310001626610 PubMedGoogle Scholar
  344. Omran H, Kobayashi D, Olbrich H et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616. doi:10.1038/nature07471 PubMedCentralPubMedGoogle Scholar
  345. Orloff M, Peterson C, He X et al (2011) Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma. JAMA 306:410–419. doi:10.1001/jama.2011.1029 PubMedCentralPubMedGoogle Scholar
  346. Orr HT, Chung MY, Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226. doi:10.1038/ng0793-221 PubMedGoogle Scholar
  347. Panagopoulos I, Aman P, Fioretos T et al (1994) Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosome Cancer 11:256–262Google Scholar
  348. Panagopoulos I, Mencinger M, Dietrich CU et al (1999) Fusion of the RBP56 and CHN genes in extraskeletal myxoid chondrosarcomas with translocation t(9;17)(q22;q11). Oncogene 18:7594–7598. doi:10.1038/sj.onc.1203155 PubMedGoogle Scholar
  349. Pannone BK, Kim SD, Noe DA, Wolin SL (2001) Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics 158:187–196PubMedCentralPubMedGoogle Scholar
  350. Parisi M, Lin HF (2000) Translational repression: A duet of Nanos and Pumilio. Curr Biol 10:R81–R83. doi:10.1016/s0960-9822(00)00283-9 PubMedGoogle Scholar
  351. Park E, Maquat LE (2013) Staufen-mediated mRNA decay. WIREs RNA 4:423–435. doi:10.1002/wrna.1168 PubMedCentralPubMedGoogle Scholar
  352. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646. doi:10.1016/j.molcel.2007.02.011 PubMedGoogle Scholar
  353. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127. doi:10.1038/nsmb724 PubMedGoogle Scholar
  354. Parsons DW, McAndrew PE, Monani UR et al (1996) An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene. Hum Mol Genet 5:1727–1732PubMedGoogle Scholar
  355. Pascual M, Vicente M, Monferrer L, Artero R (2006) The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74:65–80. doi:10.1111/j.1432-0436.2006.00060.x PubMedGoogle Scholar
  356. Pasternack SM, Refke M, Paknia E et al (2013) Mutations in SNRPE, which encodes a core protein of the spliceosome, cause autosomal-dominant hypotrichosis simplex. Am J Hum Genet 92:81–87. doi:10.1016/j.ajhg.2012.10.022 PubMedCentralPubMedGoogle Scholar
  357. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312PubMedGoogle Scholar
  358. Pearson T, Curtis F, Al-Eyadhy A et al (2008) An intronic mutation in DKC1 in an infant with Høyeraal-Hreidarsson syndrome. Am J Med Genet 146A:2159–2161. doi:10.1002/ajmg.a.32412 PubMedGoogle Scholar
  359. Perron MP, Provost P (2009) Protein components of the microRNA pathway and human diseases. Methods Mol Biol 487:369–385. doi:10.1007/978-1-60327-547-7_18 PubMedCentralPubMedGoogle Scholar
  360. Peterlin BM, Brogie JE, Price DH (2011) 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WIREs RNA 3:92–103. doi:10.1002/wrna.106 PubMedCentralPubMedGoogle Scholar
  361. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623. doi:10.1016/j.molcel.2007.05.001 PubMedGoogle Scholar
  362. Pettersson I, Hinterberger M, Mimori T et al (1984) The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies. J Biol Chem 259:5907–5914PubMedGoogle Scholar
  363. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860. doi:10.1101/gad.1956510 PubMedCentralPubMedGoogle Scholar
  364. Pierce SB, Chisholm KM, Lynch ED et al (2011) Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A 108:6543–6548. doi:10.1073/pnas.1103471108 PubMedCentralPubMedGoogle Scholar
  365. Pierce SB, Gersak K, Michaelson-Cohen R et al (2013) Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet 92:614–620. doi:10.1016/j.ajhg.2013.03.007 PubMedCentralPubMedGoogle Scholar
  366. Pillai RS, Will CL, Luhrmann R et al (2001) Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J 20:5470–5479. doi:10.1093/emboj/20.19.5470 PubMedCentralPubMedGoogle Scholar
  367. Proudfoot N (2004) New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16:272–278. doi:10.1016/j.ceb.2004.03.007 PubMedGoogle Scholar
  368. Proudfoot N, O’Sullivan J (2002) Polyadenylation: a tail of two complexes. Curr Biol 12:R855–R857PubMedGoogle Scholar
  369. Puffenberger EG, Jinks RN, Sougnez C et al (2012) Genetic mapping and exome sequencing identify variants associated with five novel diseases. PLoS One 7:e28936. doi:10.1371/journal.pone.0028936 PubMedCentralPubMedGoogle Scholar
  370. Pulst SM, Nechiporuk A, Nechiporuk T et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276. doi:10.1038/ng1196-269 PubMedGoogle Scholar
  371. Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336. doi:10.1146/annurev.biophys.37.032807.125908 PubMedGoogle Scholar
  372. Rabe B (2013) Aicardi-Goutières syndrome: clues from the RNase H2 knock-out mouse. J Mol Med 91:1235–1240. doi:10.1007/s00109-013-1061-x PubMedGoogle Scholar
  373. Rajkowitsch L, Chen D, Stampfl S et al (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118–130PubMedGoogle Scholar
  374. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736. doi:10.1016/j.cell.2013.07.038 PubMedGoogle Scholar
  375. Ramser J, Ahearn ME, Lenski C et al (2008) Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet 82:188–193. doi:10.1016/j.ajhg.2007.09.009 PubMedCentralPubMedGoogle Scholar
  376. Ramser J, Winnepenninckx B, Lenski C et al (2004) A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet 41:679–683. doi:10.1136/jmg.2004.019000 PubMedCentralPubMedGoogle Scholar
  377. Rankin J, Brown R, Dobyns WB et al (2010) Pontocerebellar hypoplasia type 6: A British case with PEHO-like features. Am J Med Genet 152A:2079–2084. doi:10.1002/ajmg.a.33531 PubMedGoogle Scholar
  378. Raven JF, Koromilas AE (2008) PERK and PKR: old kinases learn new tricks. Cell Cycle 7:1146–1150PubMedGoogle Scholar
  379. Ravenscroft JC, Suri M, Rice GI et al (2011) Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet 155A:235–237. doi:10.1002/ajmg.a.33778 PubMedGoogle Scholar
  380. Regalado ES, Guo D-C, Villamizar C et al (2011) Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 109:680–686. doi:10.1161/CIRCRESAHA.111.248161 PubMedCentralPubMedGoogle Scholar
  381. Reijo R, Lee TY, Salo P et al (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10:383–393. doi:10.1038/ng0895-383 PubMedGoogle Scholar
  382. Rice GI, Bond J, Asipu A et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832. doi:10.1038/ng.373 PubMedCentralPubMedGoogle Scholar
  383. Rice GI, del Toro DY, Jenkinson EM et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509. doi:10.1038/ng.2933 PubMedGoogle Scholar
  384. Rice GI, Kasher PR, Forte GMA et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248. doi:10.1038/ng.2414 PubMedCentralPubMedGoogle Scholar
  385. Rice GI, Reijns MAM, Coffin SR et al (2013) Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome. Hum Mutat 34:1066–1070. doi:10.1002/humu.22336 PubMedCentralPubMedGoogle Scholar
  386. Riley LG, Cooper S, Hickey P et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–MLASA syndrome. Am J Hum Genet 87:52–59. doi:10.1016/j.ajhg.2010.06.001 PubMedCentralPubMedGoogle Scholar
  387. Rio Frio T, Bahubeshi A, Kanellopoulou C et al (2011) DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305:68–77. doi:10.1001/jama.2010.1910 PubMedGoogle Scholar
  388. Roberts R, Timchenko NA, Miller JW et al (1997) Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc Natl Acad Sci U S A 94:13221–13226PubMedCentralPubMedGoogle Scholar
  389. Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241. doi:10.1038/nrm1335 PubMedGoogle Scholar
  390. Rosenberg HF (2011) Vertebrate secretory (RNase A) ribonucleases and host defense. Nucleic Acids Mol Biol 26:35–53Google Scholar
  391. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192. doi:10.1038/nrc1015 PubMedGoogle Scholar
  392. Russell JF, Steckley JL, Coppola G et al (2012) Familial cortical myoclonus with a mutation in NOL3. Ann Neurol 72:175–183. doi:10.1002/ana.23666 PubMedCentralPubMedGoogle Scholar
  393. Saada A, Shaag A, Arnon S et al (2007) Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J Med Genet 44:784–786. doi:10.1136/jmg.2007.053116 PubMedCentralPubMedGoogle Scholar
  394. Sakai K, Gofuku M, Kitagawa Y et al (1994) A hippocampal protein associated with paraneoplastic neurologic syndrome and small cell lung carcinoma. Biochem Biophys Res Commun 199:1200–1208. doi:10.1006/bbrc.1994.1358 PubMedGoogle Scholar
  395. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer MicroRNA target sites. Science 320:1643–1647. doi:10.1126/science.1155390 PubMedCentralPubMedGoogle Scholar
  396. Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36:491. doi:10.1042/BST0360491 PubMedGoogle Scholar
  397. Santos-Cortez RLP, Lee K, Azeem Z et al (2013) Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal-recessive nonsyndromic hearing impairment DFNB89. Am J Hum Genet 93:132–140. doi:10.1016/j.ajhg.2013.05.018 PubMedCentralPubMedGoogle Scholar
  398. Saunders LR, Barber GN (2003) The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 17:961–983PubMedGoogle Scholar
  399. Savva YA, Rieder LE, Reenan RA (2012) The ADAR protein family. Genome Biol 13:252. doi:10.1186/gb-2012-13-12-252 PubMedCentralPubMedGoogle Scholar
  400. Sawicka K, Bushell M, Spriggs KA, Willis AE (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36:641–647. doi:10.1042/BST0360641 PubMedGoogle Scholar
  401. Scheper GC, van der Knaap MS, Proud CG (2007a) Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 8:711–723. doi:10.1038/nrg2142 PubMedGoogle Scholar
  402. Scheper GC, van der Klok T, van Andel RJ et al (2007b) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39:534–539. doi:10.1038/ng2013 PubMedGoogle Scholar
  403. Scherrer T, Mittal N, Janga SC, Gerber AP (2010) A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5:e15499. doi:10.1371/journal.pone.0015499 PubMedCentralPubMedGoogle Scholar
  404. Schirle NT, MacRae IJ (2012) The crystal structure of human argonaute2. Science 336:1037–1040. doi:10.1126/science.1221551 PubMedCentralPubMedGoogle Scholar
  405. Schmidt K, Butler JS (2013) Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WIREs RNA 4:217–231. doi:10.1002/wrna.1155 PubMedCentralPubMedGoogle Scholar
  406. Schutte M, Hruban RH, Hedrick L et al (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530PubMedGoogle Scholar
  407. Seibler P, Djarmati A, Langpap B et al (2008) A heterozygous frameshift mutation in PRKRA (DYT16) associated with generalised dystonia in a German patient. Lancet Neurol 7:380–381. doi:10.1016/S1474-4422(08)70075-9 PubMedGoogle Scholar
  408. Senderek J, Garvey SM, Krieger M et al (2009) Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet 84:511–518. doi:10.1016/j.ajhg.2009.03.006 PubMedCentralPubMedGoogle Scholar
  409. Servadio A, Koshy B, Armstrong D et al (1995) Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 10:94–98. doi:10.1038/ng0595-94 PubMedGoogle Scholar
  410. Shamseldin HE, Alshammari M, Al-Sheddi T et al (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241. doi:10.1136/jmedgenet-2012-100836 PubMedGoogle Scholar
  411. Shastry S, Delgado MR, Dirik E et al (2010) Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet 152A:2245–2253. doi:10.1002/ajmg.a.33578 PubMedCentralPubMedGoogle Scholar
  412. Shatkin AJ, Manley JL (2000) The ends of the affair: capping and polyadenylation. Nat Struct Biol 7:838–842. doi:10.1038/79583 PubMedGoogle Scholar
  413. Shimazaki H, Takiyama Y, Ishiura H et al (2012) A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 49:777–784. doi:10.1136/jmedgenet-2012-101212 PubMedGoogle Scholar
  414. Sim S, Wolin SL (2011) Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. WIREs RNA 2:686–699. doi:10.1002/wrna.85 PubMedCentralPubMedGoogle Scholar
  415. Simard J, Tonin P, Durocher F et al (1994) Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat Genet 8:392–398. doi:10.1038/ng1294-392 PubMedGoogle Scholar
  416. Simon B, Kirkpatrick JP, Eckhardt S et al (2011) Recognition of 2“-O-methylated 3-”end of piRNA by the PAZ domain of a Piwi protein. Structure 19:172–180. doi:10.1016/j.str.2010.11.015 PubMedGoogle Scholar
  417. Simone LE, Keene JD (2013) Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev 23:35–43. doi:10.1016/j.gde.2012.12.006 PubMedCentralPubMedGoogle Scholar
  418. Simos G, Hurt E (1999) Transfer RNA biogenesis: A visa to leave the nucleus. Curr Biol 9:R238–R241PubMedGoogle Scholar
  419. Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482. doi:10.1016/j.molmed.2012.06.006 PubMedCentralPubMedGoogle Scholar
  420. Singh R, Valcarcel J (2005) Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12:645–653. doi:10.1038/nsmb961 PubMedGoogle Scholar
  421. Siomi MC, Mannen T, Siomi H (2010) How does the royal family of tudor rule the PIWI-interacting RNA pathway? Genes Dev 24:636–646. doi:10.1101/gad.1899210 PubMedCentralPubMedGoogle Scholar
  422. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258. doi:10.1038/nrm3089 PubMedGoogle Scholar
  423. Siprashvili Z, Webster DE, Kretz M et al (2012) Identification of proteins binding coding and non-coding human RNAs using protein microarrays. BMC Genomics 13:633. doi:10.1186/1471-2164-13-633 PubMedCentralPubMedGoogle Scholar
  424. Smeitink JAM, Elpeleg O, Antonicka H et al (2006) Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet 79:869–877. doi:10.1086/508434 PubMedCentralPubMedGoogle Scholar
  425. Smith CW, Valcarcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388PubMedGoogle Scholar
  426. Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotech 2010:737385. doi:10.1155/2010/737385 Google Scholar
  427. Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208. doi:10.1146/annurev.biochem.73.071403.160049 PubMedGoogle Scholar
  428. Sommerville J (1999) Activities of cold-shock domain proteins in translation control. Bioessays 21:319–325. doi:10.1002/(SICI)1521-1878(199904)21:4<319::AID-BIES8>3.0.CO;2-3 PubMedGoogle Scholar
  429. Song JJ (2004) Crystal structure of argonaute and its implications for RISC slicer activity. Science 305:1434–1437. doi:10.1126/science.1102514 PubMedGoogle Scholar
  430. Song JJ, Joshua-Tor L (2006) Argonaute and RNA–getting into the groove. Curr Opin Struct Biol 16:5–11. doi:10.1016/j.sbi.2006.01.010 PubMedGoogle Scholar
  431. Sossi V, Giuli A, Vitali T et al (2001) Premature termination mutations in exon 3 of the SMN1 gene are associated with exon skipping and a relatively mild SMA phenotype. Eur J Hum Genet 9:113–120. doi:10.1038/sj.ejhg.5200599 PubMedGoogle Scholar
  432. Splendore A, Passos-Bueno MR, Jabs EW et al (2002) TCOF1 mutations excluded from a role in other first and second branchial arch-related disorders. Am J Med Genet 111:324–327. doi:10.1002/ajmg.10567 PubMedGoogle Scholar
  433. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672. doi:10.1126/science.1154584 PubMedGoogle Scholar
  434. Steenweg ME, Ghezzi D, Haack T et al (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate “LTBL” caused by EARS2 mutations. Brain 135:1387–1394. doi:10.1093/brain/aws070 PubMedGoogle Scholar
  435. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598. doi:10.1016/j.cell.2008.06.032 PubMedCentralPubMedGoogle Scholar
  436. Stettner GM, Shoukier M, Höger C et al (2011) Familial intellectual disability and autistic behavior caused by a small FMR2 gene deletion. Am J Med Genet 155:2003–2007. doi:10.1002/ajmg.a.34122 Google Scholar
  437. Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329. doi:10.1146/annurev-genet-110410-132531 PubMedGoogle Scholar
  438. Szymczyna BR, Bowman J, McCracken S et al (2003) Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing. Genes Dev 17:461–475. doi:10.1101/gad.1060403 PubMedCentralPubMedGoogle Scholar
  439. Talim B, Pyle A, Griffin H et al (2013) Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain 136:e228. doi:10.1093/brain/aws197 PubMedGoogle Scholar
  440. Tamburino AM, Ryder SP, Walhout AJM (2013) A compendium of caenorhabditis elegans RNA binding proteins predicts extensive regulation at multiple levels. G3 (Bethesda) 3:297–304. doi:10.1534/g3.112.004390 Google Scholar
  441. Tan AY, Manley JL (2009) The TET family of proteins: functions and roles in disease. J Mol Cell Biol 1:82–92. doi:10.1093/jmcb/mjp025 PubMedCentralPubMedGoogle Scholar
  442. Tan HL, Glen E, Töpf A et al (2012) Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat 33:720–727. doi:10.1002/humu.22030 PubMedCentralPubMedGoogle Scholar
  443. Tanackovic G, Ransijn A, Ayuso C et al (2011) A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am J Hum Genet 88:643–649. doi:10.1016/j.ajhg.2011.04.008 PubMedCentralPubMedGoogle Scholar
  444. Tanaka A, Morice-Picard F, Lacombe D et al (2010) Identification of a homozygous deletion mutation in C16orf57 in a family with Clericuzio-type poikiloderma with neutropenia. Am J Med Genet 152A:1347–1348. doi:10.1002/ajmg.a.33455 PubMedGoogle Scholar
  445. Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262PubMedGoogle Scholar
  446. Tarpey PS, Raymond FL, Nguyen LS et al (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133. doi:10.1038/ng2100 PubMedCentralPubMedGoogle Scholar
  447. Tavtigian SV, Simard J, Teng DH et al (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180. doi:10.1038/84808 PubMedGoogle Scholar
  448. Teplova M, Hafner M, Teplov D et al (2013) Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites. Genes Dev 27:928–940. doi:10.1101/gad.216531.113 PubMedCentralPubMedGoogle Scholar
  449. Tessier M-C, Qu H-Q, Fréchette R et al (2006) Type 1 diabetes and the OAS gene cluster: association with splicing polymorphism or haplotype? J Med Genet 43:129–132. doi:10.1136/jmg.2005.035212 PubMedCentralPubMedGoogle Scholar
  450. Tharun S (2009) Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol 272:149–189. doi:10.1016/S1937-6448(08)01604-3 PubMedGoogle Scholar
  451. Tharun S, He W, Mayes AE et al (2000) Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404:515–518. doi:10.1038/35006676 PubMedGoogle Scholar
  452. Thomson T, Lasko P (2005) Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res 15:281–291. doi:10.1038/sj.cr.7290297 PubMedGoogle Scholar
  453. Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376. doi:10.1146/annurev.cellbio.24.110707.175327 PubMedCentralPubMedGoogle Scholar
  454. Thornton JE, Gregory RI (2012) How does Lin28 let-7 control development and disease? Trends Cell Biol 22:474–482. doi:10.1016/j.tcb.2012.06.001 PubMedCentralPubMedGoogle Scholar
  455. Tian Y, Simanshu DK, Ma J-B, Patel DJ (2011) Structural basis for piRNA 2“-O-methylated 3-”end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci U S A 108:903–910. doi:10.1073/pnas.1017762108 PubMedCentralPubMedGoogle Scholar
  456. Timchenko LT, Timchenko NA, Caskey CT, Roberts R (1996) Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum Mol Genet 5:115–121PubMedGoogle Scholar
  457. Tomasevic N, Peculis BA (2002) Xenopus LSm proteins bind U8 snoRNA via an internal evolutionarily conserved octamer sequence. Mol Cell Biol 22:4101–4112PubMedCentralPubMedGoogle Scholar
  458. Taft RJ, Vanderver A, Leventer RJ et al (2013) Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am J Hum Genet 92:774–780. doi:10.1016/j.ajhg.2013.04.006 PubMedCentralPubMedGoogle Scholar
  459. Tsai-Morris CH, Sheng Y, Gutti RK et al (2010) Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25): a multifunctional protein essential for spermatogenesis. J Androl 31:45–52. doi:10.2164/jandrol.109.008219 PubMedCentralPubMedGoogle Scholar
  460. Tsakiri KD, Cronkhite JT, Kuan PJ et al (2007) Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 104:7552–7557. doi:10.1073/pnas.0701009104 PubMedCentralPubMedGoogle Scholar
  461. Tsvetanova NG, Klass DM, Salzman J, Brown PO (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5(9). doi: 10.1371/journal.pone.0012671Google Scholar
  462. Ule J (2008) Ribonucleoprotein complexes in neurologic diseases. Curr Opin Neurobiol 18:516–523. doi:10.1016/j.conb.2008.09.018 PubMedGoogle Scholar
  463. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. doi:10.1016/j.cell.2013.06.020 PubMedCentralPubMedGoogle Scholar
  464. Valente L, Tiranti V, Marsano RM et al (2007) Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 80:44–58. doi:10.1086/510559 PubMedCentralPubMedGoogle Scholar
  465. Valverde R, Edwards L, Regan L (2008) Structure and function of KH domains. FEBS J 275:2712–2726. doi:10.1111/j.1742-4658.2008.06411.x PubMedGoogle Scholar
  466. van de Laar IMBH, Oldenburg RA, Pals G et al (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126. doi:10.1038/ng.744 PubMedGoogle Scholar
  467. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732. doi:10.1038/nrg2600 PubMedGoogle Scholar
  468. van der Knaap MS, Leegwater PAJ, Könst AAM et al (2002) Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 51:264–270PubMedGoogle Scholar
  469. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi:10.1126/science.1165942 PubMedGoogle Scholar
  470. Vanrobays E, Gélugne J-P, Caizergues-Ferrer M, Lafontaine DLJ (2004) Dim2p, a KH-domain protein required for small ribosomal subunit synthesis. RNA 10:645–656PubMedCentralPubMedGoogle Scholar
  471. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263. doi:10.1038/nrg2538 PubMedGoogle Scholar
  472. Vedrenne V, Gowher A, de Lonlay P et al (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918. doi:10.1016/j.ajhg.2012.09.001 PubMedCentralPubMedGoogle Scholar
  473. Venter JC (2001) The sequence of the human genome. Science 291:1304–1351. doi:10.1126/science.1058040 PubMedGoogle Scholar
  474. Vissers LELM, de Ligt J, Gilissen C et al (2010) A de novo paradigm for mental retardation. Nat Genet 42:1109–1112. doi:10.1038/ng.712 PubMedGoogle Scholar
  475. Vithana EN, Abu-Safieh L, Allen MJ et al (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8:375–381PubMedGoogle Scholar
  476. Volpi L, Roversi G, Colombo EA et al (2010) Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene. Am J Hum Genet 86:72–76. doi:10.1016/j.ajhg.2009.11.014 PubMedCentralPubMedGoogle Scholar
  477. von Ameln S, Wang G, Boulouiz R et al (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927. doi:10.1016/j.ajhg.2012.09.002 PubMedCentralPubMedGoogle Scholar
  478. Vulliamy TJ, Knight SW, Heiss NS et al (1999) Dyskeratosis congenita caused by a 3′ deletion: germline and somatic mosaicism in a female carrier. Blood 94:1254–1260PubMedGoogle Scholar
  479. Vulliamy T, Beswick R, Kirwan M et al (2008) Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci U S A 105:8073–8078. doi:10.1073/pnas.0800042105 PubMedCentralPubMedGoogle Scholar
  480. Wakamatsu Y, Weston JA (1997) Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 124:3449–3460PubMedGoogle Scholar
  481. Walne AJ, Vulliamy T, Marrone A et al (2007) Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 16:1619–1629. doi:10.1093/hmg/ddm111 PubMedCentralPubMedGoogle Scholar
  482. Wan M, Lee SS, Zhang X et al (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529. doi:10.1086/302690 PubMedCentralPubMedGoogle Scholar
  483. Wan J, Yourshaw M, Mamsa H et al (2012) Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44:704–708. doi:10.1038/ng.2254 PubMedCentralPubMedGoogle Scholar
  484. Wang G-S, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761. doi:10.1038/nrg2164 PubMedGoogle Scholar
  485. Wang Y, Jiang Y, Meyering-Voss M et al (1997) Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus. Nat Struct Biol 4:650–656PubMedGoogle Scholar
  486. Wang XQ, Zamore PD, Hall TMT (2001) Crystal structure of a Pumilio homology domain. Mol Cell 7:855–865. doi:10.1016/s1097-2765(01)00229-5 PubMedGoogle Scholar
  487. Wang X, McLachlan J, Zamore PD, Hall TMT (2002) Modular recognition of RNA by a human pumilio-homology domain. Cell 110:501–512PubMedGoogle Scholar
  488. Wang ET, Sandberg R, Luo S et al (2008a) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. doi:10.1038/nature07509 PubMedCentralPubMedGoogle Scholar
  489. Wang Y, Sheng G, Juranek S et al (2008b) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213. doi:10.1038/nature07315 PubMedGoogle Scholar
  490. Wang ET, Cody NAL, Jog S et al (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150:710–724. doi:10.1016/j.cell.2012.06.041 PubMedCentralPubMedGoogle Scholar
  491. Wang X, Lu Z, Gomez A et al (2013) N(6)-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. doi:10.1038/nature12730 PubMedGoogle Scholar
  492. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi:10.1016/j.tcb.2011.04.001 PubMedGoogle Scholar
  493. Weedon MN, Hastings R, Caswell R et al (2011) Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 89:308–312. doi:10.1016/j.ajhg.2011.07.002 PubMedCentralPubMedGoogle Scholar
  494. Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157PubMedGoogle Scholar
  495. Wilbert ML, Huelga SC, Kapeli K et al (2012) LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell 48:195–206. doi:10.1016/j.molcel.2012.08.004 PubMedCentralPubMedGoogle Scholar
  496. Wilson RC, Doudna JA (2013) Molecular Mechanisms of RNA Interference. Annu Rev Biophys 42:217–239. doi:10.1146/annurev-biophys-083012-130404 PubMedGoogle Scholar
  497. Wilusz CJ, Wilusz J (2005) Eukaryotic Lsm proteins: lessons from bacteria. Nat Struct Mol Biol 12:1031–1036. doi:10.1038/nsmb1037 PubMedGoogle Scholar
  498. Winkelmann J, Lin L, Schormair B et al (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21:2205–2210. doi:10.1093/hmg/dds035 PubMedCentralPubMedGoogle Scholar
  499. Winter EE, Goodstadt L, Ponting CP (2004) Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res 14:54–61. doi:10.1101/gr.1924004 PubMedCentralPubMedGoogle Scholar
  500. Wise CA, Chiang LC, Paznekas WA et al (1997) TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region. Proc Natl Acad Sci U S A 94:3110–3115PubMedCentralPubMedGoogle Scholar
  501. Wöhrle D, Kotzot D, Hirst MC et al (1992) A microdeletion of less than 250 kb, including the proximal part of the FMR-I gene and the fragile-X site, in a male with the clinical phenotype of fragile-X syndrome. Am J Hum Genet 51:299–306PubMedCentralPubMedGoogle Scholar
  502. Wool IG (1979) The structure and function of eukaryotic ribosomes. Annu Rev Biochem 48:719–754. doi:10.1146/annurev.bi.48.070179.003443 PubMedGoogle Scholar
  503. Wool IG, Chan YL, Glück A (1995) Structure and evolution of mammalian ribosomal proteins. Biochem Cell Biol 73:933–947PubMedGoogle Scholar
  504. Xiao S, Scott F, Fierke CA, Engelke DR (2002) Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu Rev Biochem 71:165–189. doi:10.1146/annurev.biochem.71.110601.135352PubMedCentralPubMedGoogle Scholar
  505. Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345. doi:10.1038/nature03441 PubMedCentralPubMedGoogle Scholar
  506. Xing Y, Lee C (2006) Alternative splicing and RNA selection pressure–evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7:499–509. doi:10.1038/nrg1896 PubMedGoogle Scholar
  507. Xu GL, Bestor TH, Bourc’his D et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191. doi:10.1038/46052 PubMedGoogle Scholar
  508. Xu Q, Modrek B, Lee C (2002) Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 30:3754–3766PubMedCentralPubMedGoogle Scholar
  509. Yamaguchi H, Calado RT, Ly H et al (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352:1413–1424. doi:10.1056/NEJMoa042980 PubMedGoogle Scholar
  510. Yamasaki S, Ivanov P, Hu G-F, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42. doi:10.1083/jcb.200811106 PubMedCentralPubMedGoogle Scholar
  511. Yanase T, Takayanagi R, Oba K et al (1996) New mutations of DAX-1 genes in two Japanese patients with X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism. J Clin Endocrinol Metabol 81:530–535Google Scholar
  512. Yao P, Fox PL (2013) Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 5:332–343. doi:10.1002/emmm.201100626 PubMedCentralPubMedGoogle Scholar
  513. Yen PH (2004) Putative biological functions of the DAZ family. Int J Androl 27:125–129. doi:10.1111/j.1365-2605.2004.00469.x PubMedGoogle Scholar
  514. Yeo GW, Van Nostrand E, Holste D et al (2005) Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 102:2850–2855. doi:10.1073/pnas.0409742102 PubMedCentralPubMedGoogle Scholar
  515. Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407. doi:10.1016/j.ajhg.2009.08.004 PubMedCentralPubMedGoogle Scholar
  516. Zhang H, Kolb FA, Jaskiewicz L et al (2004) Single processing center models for human dicer and bacterial RNase III. Cell 118:57–68. doi:10.1016/j.cell.2004.06.017 PubMedGoogle Scholar
  517. Zhang ZH, Niu ZM, Yuan WT et al (2005) A mutation in SART3 gene in a Chinese pedigree with disseminated superficial actinic porokeratosis. Br J Dermatol 152:658–663. doi:10.1111/j.1365-2133.2005.06443.x PubMedGoogle Scholar
  518. Zhang L, Huang J, Yang N et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103:9136–9141. doi:10.1073/pnas.0508889103 PubMedCentralPubMedGoogle Scholar
  519. Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600. doi:10.1016/j.cell.2008.03.031 PubMedCentralPubMedGoogle Scholar
  520. Zhang Z, Theler D, Kaminska KH et al (2010) The YTH domain is a novel RNA binding domain. J Biol Chem 285:14701–14710. doi:10.1074/jbc.M110.104711 PubMedCentralPubMedGoogle Scholar
  521. Zhao C, Bellur DL, Lu S et al (2009) Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85:617–627. doi:10.1016/j.ajhg.2009.09.020 PubMedCentralPubMedGoogle Scholar
  522. Zheng K, Xiol J, Reuter M et al (2010) Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci U S A 107:11841–11846. doi:10.1073/pnas.1003953107 PubMedCentralPubMedGoogle Scholar
  523. Zhong F, Savage SA, Shkreli M et al (2011) Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 25:11–16. doi:10.1101/gad.2006411 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefanie Gerstberger
    • 1
  • Markus Hafner
    • 2
  • Manuel Ascano
    • 1
  • Thomas Tuschl
    • 1
  1. 1.Howard Hughes Medical Institute and Laboratory for RNA Molecular BiologyThe Rockefeller UniversityNew YorkUSA
  2. 2.Laboratory of Muscle Stem Cells and Gene RegulationNIH National Institute of Arthritis and Musculoskeletal and Skin DiseaseBethesdaUSA

Personalised recommendations