Advertisement

Femtosecond Laser Inscription of Photonic and Optofluidic Devices in Fiber Cladding

  • Jason R. GrenierEmail author
  • Moez Haque
  • Luís A. Fernandes
  • Kenneth K. C. Lee
  • Peter R. Herman
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)

Abstract

Femtosecond laser internal microstructuring has emerged as a powerful tool for inscribing devices inside transparent materials. This chapter addresses the challenge of laser processing inside cylindrically shaped optical fibers to provide technical solutions for embedding highly functional photonic devices that efficiently interconnect with the fiber core waveguide. Chemical etching of laser modification tracks is further introduced to open microfluidic and other structures that, together with photonic devices, define a promising all-fiber platform of photonic, optofluidic, and microelectromechanical systems of broad interest to telecommunication, sensing, and biomedical applications. Aberration-free focusing of the femtosecond laser light with high numerical aperture oil-immersion lenses was developed for distortion-free writing of three-dimensional optical and optofluidic devices in arbitrary positions anywhere within the core and cladding of single-mode and coreless optical fibers. Various approaches for efficient coupling of light from core to cladding-formed waveguides are presented, building into demonstrations of more functional photonic devices including Mach-Zehnder interferometers and shape-temperature sensors based on distributed Bragg-grating waveguide circuits. Waveguide birefringence is exploited to define in-fiber polarization splitters and polarization-selective taps while laser trimming of waveguides with femtosecond laser-stressing tracks is shown to offer strong birefringence tuning up to 2 × 10−3 on which submillimeter length wave retarders were embedded in fiber. Femtosecond laser irradiation with chemical etching was further harnessed to form three-dimensional microfluidic networks, reservoirs, and micro-optical resonators with optically smooth sidewall roughness that were combined with cladding waveguides to demonstrate an in-fiber fluorescence detector and optofluidic Fabry-Perot refractive index sensor. The techniques presented in this chapter enable new directions for fabricating highly functional photonic microsystems and lab-in-fiber devices for complex laboratory-level diagnostics in a compact and flexible optical fiber platform.

Keywords

Femtosecond Laser Directional Coupler Polarization Beam Splitter Optical Resonator Bend Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Corning. There’s Strength in Numbers. http://www.corning.com/news_center/features/billion/index.aspx/. Accessed September 1, 2013
  2. 2.
    J.I. Peterson, G.G. Vurek, Science 224(4645), 123 (1984)CrossRefADSGoogle Scholar
  3. 3.
    B.S. Kawasaki, K.O. Hill, R.G. Lamont, Opt. Lett. 6(7), 327 (1981)CrossRefADSGoogle Scholar
  4. 4.
    K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Appl. Phys. Lett. 32(10), 647 (1978)CrossRefADSGoogle Scholar
  5. 5.
    R. Kashyap, Fiber Bragg Gratings (Academic Press, New York, 1999)Google Scholar
  6. 6.
    A. Kersey, M. Davis, H. Patrick, M. Leblanc, K. Koo, C. Askins, M. Putnam, E. Friebele, J. Lightwave Technol. 15(8), 1442 (1997)CrossRefADSGoogle Scholar
  7. 7.
    M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, A. Cusano, ACS Nano 6(4), 3163 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Ma, A. Kos, W.J. Bock, X. Li, H. Nguyen, Z.Y. Wang, A. Cusano, J. Lightwave Technol. 30(8), 1127 (2012)CrossRefADSGoogle Scholar
  9. 9.
    A. Chryssis, S. Lee, S. Lee, S. Saini, M. Dagenais, IEEE Photon. Technol. Lett. 17(6), 1253 (2005)CrossRefADSGoogle Scholar
  10. 10.
    S. Pevec, D. Donlagic, Opt. Exp. 19(16), 15641 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Y. Gong, Y. Rao, Y. Guo, Z. Ran, Y. Wu, IEEE Photon. Technol. Lett. 21, 1725 (2009)CrossRefADSGoogle Scholar
  12. 12.
    A. Vengsarkar, P. Lemaire, J. Judkins, V. Bhatia, T. Erdogan, J. Sipe, J. Lightwave Technol. 14(1), 58 (1996)CrossRefADSGoogle Scholar
  13. 13.
    Y. Wang, D.N. Wang, M. Yang, W. Hong, P. Lu, Opt. Lett. 34(21), 3328 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Y. Liu, S. Qu, Y. Li, Opt. Lett. 38(3), 335 (2013)CrossRefADSGoogle Scholar
  15. 15.
    D. Qian, E. Ip, M.F. Huang, M.J. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII (Optical Society of America, USA, 2012), p. FW6C.3Google Scholar
  16. 16.
    G.M.H. Flockhart, W.N. MacPherson, J.S. Barton, J.D.C. Jones, L. Zhang, I. Bennion, Opt. Lett. 28(6), 387 (2003)CrossRefADSGoogle Scholar
  17. 17.
    R.R. Gattass, E. Mazur, Nat. Photonics 2(4), 219 (2008)CrossRefADSGoogle Scholar
  18. 18.
    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining, Topics in Applied Physics, vol. 123 (Springer, NewYork, 2012)Google Scholar
  19. 19.
    J.C. Diels, W. Rudolph, P.F. Liao, P. Kelley, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, Optics and Photonics (Academic Press, New York, 1996)Google Scholar
  20. 20.
    S. Küper, M. Stuke, Appl. Phys. B 44(4), 199 (1987)CrossRefADSGoogle Scholar
  21. 21.
    C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129(1–2), 134 (1996)CrossRefADSGoogle Scholar
  22. 22.
    C.B. Schaffer, A. Brodeur, N. Nishimura, E. Mazur, in Proc. SPIE 3616, 182 (1999)Google Scholar
  23. 23.
    A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I.V. Hertel, E. Audouard, R. Stoian, Appl. Phys. Lett. 93(2), 021921 (2008)CrossRefADSGoogle Scholar
  24. 24.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729 (1996)CrossRefADSGoogle Scholar
  25. 25.
    Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, K. Midorikawa, Opt. Exp. 11(15), 1809 (2003)CrossRefADSGoogle Scholar
  26. 26.
    H. Zhang, S.M. Eaton, P.R. Herman, Opt. Lett. 32(17), 2559 (2007)CrossRefADSGoogle Scholar
  27. 27.
    S. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, P. Herman, IEEE Photonics Technol. Lett. 18(20), 2174 (2006)CrossRefADSGoogle Scholar
  28. 28.
    K. Minoshima, A. Kowalevicz, E. Ippen, J. Fujimoto, Opt. Exp. 10(15), 645 (2002)CrossRefADSGoogle Scholar
  29. 29.
    R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S.D. Silvestri, G. Cerullo, J. Opt. Soc. Am. B: Opt. Phys. 20(7), 1559 (2003)CrossRefADSGoogle Scholar
  30. 30.
    W. Watanabe, Y. Note, K. Itoh, Opt. Lett. 30(21), 2888 (2005)CrossRefADSGoogle Scholar
  31. 31.
    J. Burghoff, C. Grebing, S. Nolte, A. Tunnermann, Appl. Phys. Lett. 89(8), 081108 (2006)CrossRefADSGoogle Scholar
  32. 32.
    Y. Shimotsuma, P. Kazansky, J. Oiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)CrossRefADSGoogle Scholar
  33. 33.
    L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V.S. Marques, Opt. Exp. 19(19), 18294 (2011)CrossRefADSGoogle Scholar
  34. 34.
    W. Cai, A.R. Libertun, R. Piestun, Opt. Exp. 14(9), 3785 (2006)CrossRefADSGoogle Scholar
  35. 35.
    L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A.V. Korovin, U. Peschel, S. Nolte, A. Tünnermann, Appl. Phys. A 100(1), 1 (2010)CrossRefADSGoogle Scholar
  36. 36.
    R. Taylor, C. Hnatovsky, E. Simova, D. Rayner, V. Bhardwaj, P. Corkum, Opt. Lett. 28, 1043 (2003)CrossRefADSGoogle Scholar
  37. 37.
    C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, P. Corkum, Opt. Lett. 30, 1867 (2005)CrossRefADSGoogle Scholar
  38. 38.
    C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, P. Corkum, Appl. Phys. A 84, 47 (2006)CrossRefADSGoogle Scholar
  39. 39.
    W. Yang, E. Bricchi, P.G. Kazansky, J. Bovatsek, A.Y. Arai, Opt. Exp. 14(21), 10117 (2006)CrossRefADSGoogle Scholar
  40. 40.
    R. Osellame, V. Maselli, R. Vazquez, R. Ramponi, G. Cerullo, Appl. Phys. Lett. 90(23), 231118 (2007)CrossRefADSGoogle Scholar
  41. 41.
    A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26(5), 277 (2001)CrossRefADSGoogle Scholar
  42. 42.
    Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Exp. 12(10), 2120 (2004)CrossRefADSGoogle Scholar
  43. 43.
    S. Ho, P.R. Herman, J. Aitchison, Appl. Phys. A 106, 5 (2012)CrossRefADSGoogle Scholar
  44. 44.
    Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28(13), 1144 (2003)CrossRefADSGoogle Scholar
  45. 45.
    G.M. Whitesides, Nature 442, 368 (2006)CrossRefADSGoogle Scholar
  46. 46.
    R. Osellame, H. Hoekstra, G. Cerullo, M. Pollnau, Laser Photon. Rev. 5(3), 442 (2011)CrossRefGoogle Scholar
  47. 47.
    B.B. Xu, Y.L. Zhang, H. Xia, W.F. Dong, H. Ding, H.B. Sun, Lab Chip 13, 1677 (2013)CrossRefGoogle Scholar
  48. 48.
    K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, I. Bennion, Opt. Exp. 15(24), 15848 (2007)CrossRefADSGoogle Scholar
  49. 49.
    H. Fu, K. Zhou, P. Saffari, C. Mou, L. Zhang, S. He, I. Bennion, IEEE Photon. Technol. Lett. 20(19), 1609 (2008)CrossRefADSGoogle Scholar
  50. 50.
    K. Zhou, L. Zhang, X. Chen, V. Mezentsev, I. Bennion, Int. J. Smart Nano Mater. 1(4), 237 (2010)CrossRefGoogle Scholar
  51. 51.
    K. Zhou, Z. Yan, L. Zhang, I. Bennion, Opt. Exp. 19(12), 11769 (2011)CrossRefGoogle Scholar
  52. 52.
    J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, A. Tünnermann, Appl. Phys. A 86(2), 153 (2007)CrossRefADSGoogle Scholar
  53. 53.
    A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Electron. Lett. 40(19), 1170 (2004)CrossRefGoogle Scholar
  54. 54.
    G.D. Marshall, R.J. Williams, N. Jovanovic, M.J. Steel, M.J. Withford, Opt. Exp. 18(19), 19844 (2010)CrossRefADSGoogle Scholar
  55. 55.
    J.R. Grenier, L.A. Fernandes, P.V. Marques, J.S. Aitchison, P.R. Herman, CLEO:2011-Laser Appl. Photonic Appl. 2, CMZ1 (2011)Google Scholar
  56. 56.
    L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Opt. Exp. 13(6), 1999 (2005)CrossRefADSGoogle Scholar
  57. 57.
    S.M. Eaton, M.L. Ng, R. Osellame, P.R. Herman, J. Non-Cryst. Solids 357(13), 2387 (2011)CrossRefADSGoogle Scholar
  58. 58.
    J.R. Grenier, L.A. Fernandes, J.S. Aitchison, P.V.S. Marques, P.R. Herman, Opt. Lett. 37(12), 2289 (2012)CrossRefADSGoogle Scholar
  59. 59.
    K. Dolgaleva, A. Malacarne, P. Tannouri, L.A. Fernandes, J.R. Grenier, J.S. Aitchison, J. Azaña, R. Morandotti, P.R. Herman, P.V.S. Marques, Opt. Lett. 36(22), 4416 (2011)CrossRefADSGoogle Scholar
  60. 60.
    J.R. Grenier, L.A. Fernandes, P.R. Herman, Opt. Exp. 21(4), 4493 (2013)CrossRefADSGoogle Scholar
  61. 61.
    F.R. Adikan, C.B. Gawith, P.G. Smith, I.J. Sparrow, G.D. Emmerson, C. Riziotis, H. Ahmad, Appl. Opt. 45(24), 6113 (2006)ADSGoogle Scholar
  62. 62.
    K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 26(19), 1516 (2001)CrossRefADSGoogle Scholar
  63. 63.
    F. Dürr, H. Renner, J. Lightwave Technol. 23(2), 876 (2005)CrossRefADSGoogle Scholar
  64. 64.
    J.R. Grenier, L.A. Fernandes, P.R. Herman, Opt. Exp. (2013). Submitted for publicationGoogle Scholar
  65. 65.
    A.M. Streltsov, N.F. Borrelli, Opt. Lett. 26(1), 42 (2001)CrossRefADSGoogle Scholar
  66. 66.
    K. Suzuki, V. Sharma, J.G. Fujimoto, E.P. Ippen, Y. Nasu, Opt. Exp. 14(6), 2335 (2006)CrossRefADSGoogle Scholar
  67. 67.
    W.J. Chen, S.M. Eaton, H. Zhang, P.R. Herman, Opt. Exp. 16(15), 11470 (2008)CrossRefADSGoogle Scholar
  68. 68.
    A. Yariv, IEEE J. Quantum Electron. 9(9), 919 (1973)CrossRefADSGoogle Scholar
  69. 69.
    H. Haus, W. Huang, S. Kawakami, N. Whitaker, J. Lightwave Technol. 5(1), 16 (1987)CrossRefADSGoogle Scholar
  70. 70.
    L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V. Marques, Opt. Exp. 19(13), 11992 (2011)CrossRefADSGoogle Scholar
  71. 71.
    J. Thomas, N. Jovanovic, R.G. Becker, G.D. Marshall, M.J. Withford, A. Tünnermann, S. Nolte, M.J. Steel, Opt. Exp. 19(1), 325 (2011)CrossRefADSGoogle Scholar
  72. 72.
    J.U. Thomas, N. Jovanovic, R.G. Krämer, G.D. Marshall, M.J. Withford, A. Tünnermann, S. Nolte, M.J. Steel, Opt. Exp. 20(19), 21434 (2012)CrossRefADSGoogle Scholar
  73. 73.
    V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Opt. Lett. 29(12), 1312 (2004)CrossRefADSGoogle Scholar
  74. 74.
    L.A. Fernandes, J.R. Grenier, P.V.S. Marques, J.S. Aitchison, P.R. Herman, J. Lightwave Technol. 31(22), 3563 (2013).CrossRefGoogle Scholar
  75. 75.
    P. Lu, Q. Chen, Opt. Lett. 36(2), 268 (2011)CrossRefADSGoogle Scholar
  76. 76.
    Y. Wang, M. Yang, D. Wang, S. Liu, P. Lu, J. Opt. Soc. Am. B: Opt. Phys. 27(3), 370 (2010)CrossRefADSGoogle Scholar
  77. 77.
    L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Opt. Lett. 36(19), 3753 (2011)CrossRefADSGoogle Scholar
  78. 78.
    C.L. Du, Z.L. Ou, J.R. Zheng, Y.Q. Yu, P.G. Yan, J.S. Wang, X. Chen, Adv. Mater. Res. 658, 232 (2013)CrossRefGoogle Scholar
  79. 79.
    R.G. Duncan, M.E. Froggatt, S.T. Kreger, R.J. Seeley, D.K. Gifford, A.K. Sang, M.S. Wolfe, in Proceedings of SPIE - The International Society for Optical Engineering, vol. 6530 (2007)Google Scholar
  80. 80.
    A. Fender, W.N. MacPherson, R.R.J. Maier, J.S. Barton, D.S. George, R.I. Howden, G.W. Smith, B.J.S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, I. Bennion, IEEE Sens. J. 8(7), 1292 (2008)CrossRefGoogle Scholar
  81. 81.
    K.K. Lee, A. Mariampillai, M. Haque, B.A. Standish, V.X.D. Yang, P.R. Herman, Opt. Exp. (2013). Accepted for publicationGoogle Scholar
  82. 82.
    K.O. Hill, G. Meltz, J. Lightwave Technol. 15(8), 1263 (1997)CrossRefADSGoogle Scholar
  83. 83.
    M.A. Crisfield, Comput. Meth. Appl. Mech. Eng. 81(2), 131 (1990)CrossRefzbMATHADSGoogle Scholar
  84. 84.
    J. Lauzon, S. Thibault, J. Martin, F. Ouellette, Opt. Lett. 19(23), 2027 (1994)CrossRefADSGoogle Scholar
  85. 85.
    M.S. van der Heiden, K.R. Henken, L.K. Chen, B.G. van den Bosch, R. van den Braber, J. Dankelman, J. van den Dobbelsteen, in SPIE Optical Systems Design, vol. 8550 (SPIE, Barcelona, 2012), pp. 85,500L–85,500L–14Google Scholar
  86. 86.
    Y.L. Park, S. Elayaperumal, B. Daniel, S.C.R.S.C. Ryu, M.S.M. Shin, J. Savall, R.J. Black, B. Moslehi, M.R. Cutkosky, IEEE/ASME Trans. Mechatron. 15(6), 906 (2010)Google Scholar
  87. 87.
    S. Betti, G. De Marchis, E. Iannone, J. Lightwave Technol. 10(12), 1985 (1992)CrossRefADSGoogle Scholar
  88. 88.
    J.L. O’Brien, A. Furusawa, J. Vuckovic, Nature Photon. 3(12), 687 (2009)CrossRefADSGoogle Scholar
  89. 89.
    M. Lobino, J.L. O’Brien, Nature 469(7328), 43 (2011)CrossRefADSGoogle Scholar
  90. 90.
    Z. Liu, C. Wu, M.L.V. Tse, C. Lu, H.Y. Tam, Opt. Lett. 38(9), 1385 (2013)CrossRefADSGoogle Scholar
  91. 91.
    O. Frazao, C. Jesus, J.M. Baptista, J.L. Santos, P. Roy, IEEE Photon. Technol. Lett. 21(17), 1277 (2009)CrossRefADSGoogle Scholar
  92. 92.
    D. Lesnik, D. Donlagic, Opt. Lett. 38(9), 1494 (2013)CrossRefGoogle Scholar
  93. 93.
    R. Goto, R.J. Williams, N. Jovanovic, G.D. Marshall, M.J. Withford, S.D. Jackson, Opt. Lett. 36(10), 1872 (2011)CrossRefADSGoogle Scholar
  94. 94.
    C.C. Willis, E. McKee, P. Böswetter, A. Sincore, J. Thomas, C. Voigtländer, R.G. Krämer, J.D. Bradford, L. Shah, S. Nolte, A. Tünnermann, M. Richardson, Opt. Exp. 21(9), 10467 (2013)CrossRefADSGoogle Scholar
  95. 95.
    T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, et al., IEEE Photon. Technol. Lett. 20(8), 554 (2008)CrossRefADSGoogle Scholar
  96. 96.
    L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V.S. Marques, Opt. Exp. 20(22), 24103 (2012)CrossRefADSGoogle Scholar
  97. 97.
    L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 171(4–6), 279 (1999)CrossRefADSGoogle Scholar
  98. 98.
    E. Bricchi, B.G. Klappauf, P.G. Kazansky, Opt. Lett. 29(1), 119 (2004)CrossRefADSGoogle Scholar
  99. 99.
    Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, Adv. Mater. 22(36), 4039 (2010)CrossRefGoogle Scholar
  100. 100.
    D. Grobnic, S.J. Mihailov, C.W. Smelser, J. Lightwave Technol. 25(8), 1996 (2007)CrossRefADSGoogle Scholar
  101. 101.
    K. Chah, D. Kinet, M. Wuilpart, P. Mégret, C. Caucheteur, Opt. Lett. 38(4), 594 (2013)CrossRefADSGoogle Scholar
  102. 102.
    S. Ho, M. Haque, P.R. Herman, J. Aitchison, Opt. Lett. 37, 1682 (2012)CrossRefADSGoogle Scholar
  103. 103.
    M. Haque, K.K.C. Lee, S. Ho, L.A. Fernandes and P.R. Herman, Lab Chip (2014). doi:☺ 10.1039/C4LC00648H
  104. 104.
    S. Ho, Femtosecond Laser Microfabrication of Optofluidic Lab-on-a-Chip with Selective Chemical Etching. Ph.D. thesis, University of Toronto (2013)Google Scholar
  105. 105.
    F. Toigo, A. Marvin, V. Celli, N. Hill, Phys. Rev. B 15, 5618 (1977)CrossRefADSGoogle Scholar
  106. 106.
    J. Taylor, A. Carrano, S. Kandlikar, Int. J. Thermal Sci. 45, 962 (2006)CrossRefGoogle Scholar
  107. 107.
    M. Ohtsu, J. Lightwave Technol. 13, 1200 (1995)CrossRefADSGoogle Scholar
  108. 108.
    C. Tuck, R. Hague, C. Doyle, Meas. Sci. Technol. 17, 2206 (2006)CrossRefADSGoogle Scholar
  109. 109.
    M. Zimmermann, P. Hunziker, E. Delamarche, Mirofluid. Nanofluid. 5, 395 (2008)CrossRefGoogle Scholar
  110. 110.
    T. Wei, Y. Han, Y. Li, H. Tsai, H. Xiao, Opt. Exp. 16, 5764 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jason R. Grenier
    • 1
    Email author
  • Moez Haque
    • 1
  • Luís A. Fernandes
    • 1
  • Kenneth K. C. Lee
    • 1
  • Peter R. Herman
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Toronto, Institute for Optical SciencesTorontoCanada

Personalised recommendations