Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR

  • Yoshiki YamaguchiEmail author
  • Takumi Yamaguchi
  • Koichi KatoEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 9)


Carbohydrate chains play critical roles in cellular recognition and subsequent signal transduction in the nervous system. Furthermore, gangliosides are targets for various amyloidogenic proteins associated with neurodegenerative disorders. To better understand the molecular mechanisms underlying these biological phenomena, atomic views are essential to delineate dynamic biomolecular interactions. Nuclear magnetic resonance (NMR) spectroscopy provides powerful tools for studying structures, dynamics, and interactions of biomolecules at the atomic level. This chapter describes the basics of solution NMR techniques and their applications to the analysis of 3D structures and interactions of glycoconjugates in the nervous system.


Nuclear magnetic resonance Structure Dynamics Interaction Oligosaccharide Glycolipid 


Amyloid β


Deuterium-induced isotope shift


Free induction decay


Heteronuclear single-quantum coherence


Molecular dynamics


Nuclear magnetic resonance


Nuclear Overhauser effect


NOE spectroscopy


Pseudocontact shift


Paramagnetic relaxation enhancement


Replica exchange MD


Radio frequency


Saturation transfer difference


Transferred NOE


Transverse relaxation optimized spectroscopy



This study was partly supported by JSPS/MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovation Areas (20107004 and 25102008), Scientific Research (A) (24249002), Scientific Research (C) (25460054), Challenging Exploratory, Research (26560451), and Young Scientists (B) (24750170).

Compliance with Ethics Requirements The authors declare that they have no conflict of interest and that they have used no human subjects in work cited that was done in their laboratory.


  1. Abragam A. The principles of nuclear magnetism. The international series of monographs on physics. Oxford: Clarendon; 1961.Google Scholar
  2. Acquotti D, Poppe L, Dabrowski J, von der Lieth CW, Sonnino S, Tettamanti G. Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water- dodecylphosphocholine solutions. J Am Chem Soc. 1990;112(21):7772–8.CrossRefGoogle Scholar
  3. Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease – a review. J Lipid Res. 2008;49(6):1157–75.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bertini I, Luchinat C, Parigi G, Pierattelli R. NMR spectroscopy of paramagnetic metalloproteins. ChemBioChem. 2005;6(9):1536–49.PubMedCrossRefGoogle Scholar
  5. Bodenhausen G, Ruben DJ. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett. 1980;69(1):185–9.CrossRefGoogle Scholar
  6. Brocca P, Bernardi A, Raimondi L, Sonnino S. Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconj J. 2000;17(5):283–99.PubMedCrossRefGoogle Scholar
  7. Clore GM, Gronenborn AM. Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Reson. 1982;48(3):402–17.Google Scholar
  8. Clore GM, Gronenborn AM. Theory of the time-dependent transferred nuclear Overhauser effect – applications to structural-analysis of ligand protein complexes in solution. J Magn Reson. 1983;53(3):423–42.Google Scholar
  9. Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999;13(3):289–302.PubMedCrossRefGoogle Scholar
  10. Cumming DA, Carver JP. Virtual and solution conformations of oligosaccharides. Biochemistry. 1987;26(21):6664–76.PubMedCrossRefGoogle Scholar
  11. Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem. 1989;264(16):9476–84.PubMedGoogle Scholar
  12. Englander SW, Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–65.PubMedCrossRefGoogle Scholar
  13. Englander SW, Mayne L, Krishna MM. Protein folding and misfolding: mechanism and principles. Q Rev Biophys. 2007;40(4):287–326.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fadda E, Woods RJ. Molecular simulations of carbohydrates and protein–carbohydrate interactions: motivation, issues and prospects. Drug Discov Today. 2010;15(15–16):596–609.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fantini J, Yahi N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med. 2010;12:e27.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fenderson BA, Zehavi U, Hakomori S. A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med. 1984;160(5):1591–6.PubMedCrossRefGoogle Scholar
  17. Forsén S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39(11):2892–901.CrossRefGoogle Scholar
  18. Forsén S, Hoffman RA. Exchange rates by nuclear magnetic multiple resonance. III. Exchange reactions in systems with several nonequivalent sites. J Chem Phys. 1964;40(5):1189–96.CrossRefGoogle Scholar
  19. Glaudemans CP, Lerner L, Daves Jr GD, Kováč P, Venable R, Bax A. Significant conformational changes in an antigenic carbohydrate epitope upon binding to a monoclonal antibody. Biochemistry. 1990;29(49):10906–11.PubMedCrossRefGoogle Scholar
  20. Hakomori S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj J. 2004;21(3–4):125–37.PubMedCrossRefGoogle Scholar
  21. Hanashima S, Kato K, Yamaguchi Y. 13C-NMR quantification of proton exchange at LewisX hydroxyl groups in water. Chem Commun. 2011;47(38):10800–2.CrossRefGoogle Scholar
  22. Hanashima S, Sato C, Tanaka H, Takahashi T, Kitajima K, Yamaguchi Y. NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies. Bioorg Med Chem. 2013;21(19):6069–76.PubMedCrossRefGoogle Scholar
  23. Homans SW, Dwek RA, Rademacher TW. Tertiary structure in N-linked oligosaccharides. Biochemistry. 1987;26(20):6553–60.PubMedCrossRefGoogle Scholar
  24. Jain NU, Venot A, Umemoto K, Leffler H, Prestegard JH. Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands. Protein Sci. 2001;10(11):2393–400.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jeng MF, Englander SW, Elöve GA, Wand AJ, Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990;29(46):10433–7.PubMedCrossRefGoogle Scholar
  26. Johnson PE, Brun E, MacKenzie LF, Withers SG, McIntosh LP. The cellulose-binding domains from Cellulomonas fimi β-1,4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations. J Mol Biol. 1999;287(3):609–25.PubMedCrossRefGoogle Scholar
  27. Kamiya Y, Yagi-Utsumi M, Yagi H, Kato K. Structural and molecular basis of carbohydrate–protein interaction systems as potential therapeutic targets. Curr Pharm Design. 2011;17(17):1672–84.CrossRefGoogle Scholar
  28. Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, et al. 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta. 2008;1780(3):619–25.PubMedCrossRefGoogle Scholar
  29. Kato K, Yamaguchi Y, Arata Y. Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc. 2010;56:346–59.PubMedCrossRefGoogle Scholar
  30. Kurland RJ, McGarvey BR. Isotropic NMR shifts in transition metal complexes: the calculation of the fermi contact and pseudocontact terms. J Magn Reson. 1970;2(3):286–301.Google Scholar
  31. Levitt MH. Spin dynamics: basics of nuclear magnetic resonance. 2nd ed. New York: Wiley; 2008.Google Scholar
  32. Lian LY, Roberts GCK. Effects of chemical exchange on NMR spectra. In: Roberts GCK, editor. NMR of macromolecules. Oxford: Oxford University Press; 1993. p. 153–82.Google Scholar
  33. Loria JP, Rance M, Palmer AGI. A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc. 1999;121(10):2331–2.CrossRefGoogle Scholar
  34. Matsuzaki K, Kato K, Yanagisawa K. Aβ polymerization through interaction with membrane gangliosides. Biochim Biophys Acta. 2010;1801(8):868–77.PubMedCrossRefGoogle Scholar
  35. Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed. 1999;38(12):1784–8.CrossRefGoogle Scholar
  36. Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123(25):6108–17.PubMedCrossRefGoogle Scholar
  37. McConnell HM, Robertson RE. Isotropic nuclear resonance shifts. J Chem Phys. 1958;29(6):1361–5.CrossRefGoogle Scholar
  38. Mittermaier A, Kay LE. New tools provide new insights in NMR studies of protein dynamics. Science. 2006;312(5771):224–8.PubMedCrossRefGoogle Scholar
  39. Ni F, Scheraga HA. Use of the transferred nuclear Overhauser effect to determine the conformations of ligands bound to proteins. Acc Chem Res. 1994;27(9):257–64.CrossRefGoogle Scholar
  40. Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-Glycans in solution. J Phys Chem B. 2012;116(29):8504–12.PubMedCrossRefGoogle Scholar
  41. Ohki SY, Kainosho M. Stable isotope labeling methods for protein NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2008;53(4):208–26.CrossRefGoogle Scholar
  42. Otting G. Protein NMR using paramagnetic ions. Annu Rev Biophys. 2010;39:387–405.PubMedCrossRefGoogle Scholar
  43. Paterson Y, Englander SW, Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990;249(4970):755–9.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Pervushin K, Riek R, Wider G, Wüthrich K. Attenuated T 2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366–71.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Prestegard JH, Koerner TAW, Demou PC, Yu RK. Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc. 1982;104(18):4993–5.CrossRefGoogle Scholar
  46. Re S, Miyashita N, Yamaguchi Y, Sugita Y. Structural diversity and changes in conformational equilibria of biantennary complex-type N-glycans in water revealed by replica-exchange molecular dynamics simulation. Biophys J. 2011;101(10):L44–6.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Satoh T, Chen Y, Hu D, Hanashima S, Yamamoto K, Yamaguchi Y. Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell. 2010;40(6):905–16.PubMedCrossRefGoogle Scholar
  48. Solomon I. Relaxation processes in a system of two spins. Phys Rev. 1955;99(2):559–65.CrossRefGoogle Scholar
  49. Spera S, Ikura M, Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991;1(2):155–65.PubMedCrossRefGoogle Scholar
  50. Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature. 2007;447(7147):1021–5.PubMedCrossRefGoogle Scholar
  51. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1–2):141–51.CrossRefGoogle Scholar
  52. Taylor DR, Hooper NM. The prion protein and lipid rafts. Mol Membr Biol. 2006;23(1):89–99.PubMedCrossRefGoogle Scholar
  53. Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K. Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J. 2009;26(8):999–1006.PubMedCrossRefGoogle Scholar
  54. Vliegenthart JF. High resolution 1H-NMR spectroscopy of carbohydrate structures. Adv Exp Med Biol. 1980;125:77–91.PubMedCrossRefGoogle Scholar
  55. Voisin S, Houliston RS, Kelly J, Brisson JR, Watson D, Bardy SL, et al. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J Biol Chem. 2005;280(17):16586–93.PubMedCrossRefGoogle Scholar
  56. Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.Google Scholar
  57. Wishart DS, Sykes BD. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994;4(2):171–80.PubMedGoogle Scholar
  58. Woods RJ, Tessier MB. Computational glycoscience: characterizing the spatial and temporal properties of glycans and glycan-protein complexes. Curr Opin Struct Biol. 2010;20(5):575–83.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Yagi-Utsumi M, Kameda T, Yamaguchi Y, Kato K. NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid β. FEBS Lett. 2010;584(4):831–6.PubMedCrossRefGoogle Scholar
  60. Yamaguchi T, Kamiya Y, Choo YM, Yamamoto S, Kato K. Terminal spin labeling of a high-mannose-type oligosaccharide for quantitative NMR analysis of its dynamic conformation. Chem Lett. 2013a;42(5):544–6.CrossRefGoogle Scholar
  61. Yamaguchi T, Uno T, Uekusa Y, Yagi-Utsumi M, Kato K. Ganglioside-embedding small bicelles for probing membrane-landing processes of intrinsically disordered proteins. Chem Commun. 2013b;49(12):1235–7.CrossRefGoogle Scholar
  62. Yamaguchi Y, Kato K. NMR analyses of the carbohydrate–protein interactions. Exp Med. 2007a;25(7):231–8.Google Scholar
  63. Yamaguchi Y, Kato K. Structural glycobiology by stable-isotope-assisted NMR spectroscopy. In: Webb GA, editor. Modern Magnetic Resonance. The Netherlands: Springer; 2007b. p. 219–25.Google Scholar
  64. Yamaguchi Y, Kato K. Analysis of sugar–protein interactions by NMR, Experimental Glycoscience Glycochemistry. Berlin: Springer; 2008. p. 121–3.Google Scholar
  65. Yamaguchi Y, Nishima W, Re SY, Sugita Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun Mass Spect. 2012;26(24):2877–84.CrossRefGoogle Scholar
  66. Yamamoto S, Zhang Y, Yamaguchi T, Kameda T, Kato K. Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun. 2012;48(39):4752–4.CrossRefGoogle Scholar
  67. Yu RK, Koerner TA, Scarsdale JN, Prestegard JH. Elucidation of glycolipid structure by proton nuclear magnetic resonance spectroscopy. Chem Phys Lipids. 1986;42(1–3):27–48.PubMedCrossRefGoogle Scholar
  68. Zhang Y, Yamaguchi T, Kato K. New NMR tools for characterizing the dynamic conformations and interactions of oligosaccharides. Chem Lett. 2013;42(12):1455–62.Google Scholar
  69. Zhang Y, Yamamoto S, Yamaguchi T, Kato K. Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules. 2012;17(6):6658–71.PubMedCrossRefGoogle Scholar
  70. Zhao H, Pan Q, Zhang W, Carmichael I, Serianni AS. DFT and NMR studies of 2 J COH, 3 J HCOH, and 3 J CCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution. J Org Chem. 2007;72(19):7071–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Structural Glycobiology Team, Systems Glycobiology Research GroupRIKEN-Max Planck Joint Research Center, RIKEN Global Research ClusterWako-City, SaitamaJapan
  2. 2.Institute for Molecular Science and Okazaki Institute for Integrative BioscienceMyodaiji, OkazakiJapan
  3. 3.Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho-ku, NagoyaJapan
  4. 4.The Glycoscience InstituteOchanomizu UniversityBunkyo-kuJapan

Personalised recommendations