Advertisement

Glycobiology of Ion Transport in the Nervous System

  • Martha C. NowyckyEmail author
  • Gusheng Wu
  • Robert W. Ledeen
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 9)

Abstract

The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.

Keywords

Ion channels Voltage-gated sodium channel Transporters GM1 and Ca2+ modulation Sodium-calcium exchanger TRP channels 

Abbreviations

N’ase (also called sialidase)

Neuraminidase

TRP (TRPC3, TRPC5, TRPC6, TRPV1, TRPM8)

Transient receptor potential channel

AChR

Nicotinic acetylcholine receptor

CtxB

Cholera toxin B subunit

DRG

Dorsal root ganglion

ER

Endoplasmic reticulum

NCX

Sodium-calcium exchanger

PMCA

Plasma membrane Ca2+-ATPase

SERCA

Sarco/endoplasmic reticulum Ca2+-ATPase

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ando S, Yu RK. Isolation and characterization of two isomers of brain tetrasialogangliosides. J Biol Chem. 1979;254:12224–9.PubMedGoogle Scholar
  2. Barchi RL. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J Neurochem. 1983;40:1377–85.PubMedCrossRefGoogle Scholar
  3. Bennett ES. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5-S6 loop of domain I. J Physiol. 2002;538:675–90.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR. Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism. J Gen Physiol. 1997;109:327–43.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Carlson RO, Masco D, Brooker G, Spiegel S. Endogenous ganglioside GM1 modulates l-type calcium channel activity in N18 neuroblastoma cells. J Neurosci. 1994;14:2272–81.PubMedGoogle Scholar
  6. Castillo C, Diaz ME, Balbi D, Thornhill WB, Recio-Pinto E. Changes in sodium channel function during postnatal brain development reflect increases in the level of channel sialidation. Brain Res Dev Brain Res. 1997;104:119–30.PubMedCrossRefGoogle Scholar
  7. Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol. 2012;590:2577–89.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cotella D, Radicke S, Bortoluzzi A, Ravens U, Wettwer E, Santoro C, et al. Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of Ito channel complex. Pflugers Arch. 2010;460:87–97.Google Scholar
  9. Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem. 2003;278:47842–52.PubMedCrossRefGoogle Scholar
  10. Erler I, Al-Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem. 2006;281(50):38396–404.PubMedCrossRefGoogle Scholar
  11. Fang Y, Wu G, Xie X, Lu Z-H, Ledeen RW. Endogenous GM1 ganglioside of the plasma membrane promotes neuritogenesis by two mechanisms. Neurochem Res. 2000;25:931–40.PubMedCrossRefGoogle Scholar
  12. Fang Y, Xie X, Ledeen RW, Wu G. Characterization of cholera toxin B subunit-induced Ca2+ influx in neuroblastoma cells: evidence for a voltage independent GM1-associated Ca2+ channel. J Neurosci Res. 2002;57:1–10.Google Scholar
  13. Gabius H-J, editor. The sugar code. Fundamentals of glycosciences. Weinheim, Germany: Wiley-VHC; 2009.Google Scholar
  14. Galva C, Artigas P, Gatto C. Nuclear Na+K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci. 2012;125:6137–47.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gilly WF, Lucero MT, Horrigan FT. Control of the spatial distribution of sodium channels in giant fiber lobe neurons of the squid. Neuron. 1990;5:663–74.PubMedCrossRefGoogle Scholar
  16. Ginzburg L, Kacher Y, Futerman AH. The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol. 2004;15:417–31.PubMedCrossRefGoogle Scholar
  17. Ginzburg L, Li S-C, Li Y-T, Futerman AH. An exposed carboxyl group on sialic acid is essential for gangliosides to inhibit calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase: relevance to gangliosidoses. J Neurochem. 2008;104:140–6.PubMedGoogle Scholar
  18. Hall MK, Cartwright TA, Fleming CM, Schwalbe RA. Importance of glycosylation on function of a potassium channel in neuroblastoma cells. PLoS One. 2011;6:e19317.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Handa Y, Ozaki N, Honda T, Furukawa K, Tomita Y, Inoue M, et al. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain. 2005;117:271–9.PubMedCrossRefGoogle Scholar
  20. Hartshorne RP, Catterall WA. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A. 1981;78:4620–4.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hartshorne RP, Catterall WA. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984;259:1667–75.PubMedGoogle Scholar
  22. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a differentiation. J Biol Chem. 2000;275:8007–15.PubMedCrossRefGoogle Scholar
  23. Isaev D, Isaeva E, Shatskih T, Zhao Q, Smits NC, Shworak NW, et al. Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. J Neurosci. 2007;27:11587–94.PubMedCrossRefGoogle Scholar
  24. Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Effect of neuraminidase treatment on persistent epileptiform activity in the rat hippocampus. Pharmacol Rep. 2011;63:840–4.PubMedCrossRefGoogle Scholar
  25. Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, et al. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992;256:839–42.PubMedCrossRefGoogle Scholar
  26. James WM, Agnew WS. Alpha-(2–8)-polysialic acid immunoreactivity in voltage-sensitive sodium channel of eel electric organ. Proc R Soc Lond B Biol Sci. 1989;237:233–45.PubMedCrossRefGoogle Scholar
  27. Jin W, Lee NM, Loh HH, Thayer SA. Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma X glioma NG108-15 cells. Mol Pharmacol. 1992;42:1083–9.PubMedGoogle Scholar
  28. Johnson D, Montpetit ML, Stocker PJ, Bennett ES. The sialic acid component of the beta1 subunit modulates voltage-gated sodium channel function. J Biol Chem. 2004;279:44303–10.PubMedCrossRefGoogle Scholar
  29. Keren O, Garty M, Sarne Y. Dual regulation by opioids of [3H]norepinephrine release in the human neuroblastoma cell line SK-N-SH. Brain Res. 1994;646:319–23.PubMedCrossRefGoogle Scholar
  30. Keren O, Gafni M, Sarne Y. Opioids potentiate transmitter release from SK-N-SH human neuroblastoma cells by modulating N-type calcium channels. Brain Res. 1997;764:277–82.PubMedCrossRefGoogle Scholar
  31. Khanna R, Myers MP, Laine M, Papazian DM. Glycosylation increases potassium channel stability and surface expression in mammalian cells. J Biol Chem. 2001;276:34028–34.PubMedCrossRefGoogle Scholar
  32. Kopitz J, Von Reitzenstein C, Burchert M, Cantz M, Gabius H-J. Galectin-1 is a major receptor for ganglioside GM1, a product of the growth controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem. 1998;273:11205–11.PubMedCrossRefGoogle Scholar
  33. Korkotian E, Schwarz A, Pelled D, Schwarzmann G, Segal M, Futerman AH. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem. 1999;274:21673–8.PubMedCrossRefGoogle Scholar
  34. Ledeen RW, Wu G. Ganglioside function in calcium homeostasis and signaling. Neurochem Res. 2002;27:637–47.PubMedCrossRefGoogle Scholar
  35. Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, et al. Beyond glycoproteins as galectincounterreceptors: tumor-effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci. 2012;1253:206–21.PubMedCrossRefGoogle Scholar
  36. Leon A, Facci L, Toffano G, Sonnino S, Tettamanti G. Activation of (Na+, K+)-ATPase by nanomolar concentrations of GM1 ganglioside. J Neurochem. 1981;37:350–7.PubMedCrossRefGoogle Scholar
  37. Lloyd-Evans E, Pelled D, Riebeling C, Bodennec J, de-Morgan A, Waller H, Schiffmann R, Futerman AH. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem. 2003;278:23594–9.PubMedCrossRefGoogle Scholar
  38. Lo WY, Lagrange AH, Hernandez CC, Harrison R, Dell A, Haslam SM, et al. Glycosylation of β2 subunits regulates GABAA receptor biogenesis and channel gating. J Biol Chem. 2010;285:31348–61.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Masco D, Van de Walle M, Spiegel S. Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates growth and differentiation of neuroblastoma N18 cells. J Neurosci. 1991;11:2443–52.PubMedGoogle Scholar
  40. Messner DJ, Catterall WA. The sodium channel from rat brain. Separation and characterization of subunits. J Biol Chem. 1985;260:10597–604.PubMedGoogle Scholar
  41. Milani D, Minozzi MC, Petrelli L, Guidolin D, Skaper SD, Spoerri PE. Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates intracellular free calcium in sensory neurons. J Neurosci Res. 1992;33:466–75.PubMedCrossRefGoogle Scholar
  42. Miller JA, Agnew WS, Levinson SR. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983;22:462–70.PubMedCrossRefGoogle Scholar
  43. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, et al. Molecular cloning and characterization of plasma membrane-associated sialidase specific for gangliosides. J Biol Chem. 1999;274:5004–11.PubMedCrossRefGoogle Scholar
  44. Montell C. Exciting trips for TRPs. Nat Cell Biol. 2004;6:690–2.PubMedCrossRefGoogle Scholar
  45. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B, et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J. 2000;81:284–96.Google Scholar
  46. Montpetit ML, Stocker PJ, Schwetz TA, Harper JM, Norring SA, Schaffer L, et al. Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc Natl Acad Sci U S A. 2009;106:16517–22.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nakamura K, Wu G, Ledeen RW. Protection of Neuro-2a cells against calcium ionophore cytotoxicity by gangliosides. J Neurosci Res. 1992;31:245–53.PubMedCrossRefGoogle Scholar
  48. Nedelkoska L, Benjamins JA. Binding of cholera toxin B subunit: a surface marker for murine microglia but not oligodendrocytes or astrocytes. J Neurosci Res. 1998;53:605–12.PubMedCrossRefGoogle Scholar
  49. O’Hanlon GM, Hirst TR, Willison HJ. Ganglioside GM1 binding toxins and human neuropathy-associated IgM antibodies differentially promote neuritogenesis in a PC12 assay. Neurosci Res. 2003;47:383–90.PubMedCrossRefGoogle Scholar
  50. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.PubMedCrossRefGoogle Scholar
  51. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem. 2003;278:29496–501.PubMedCrossRefGoogle Scholar
  52. Peng XQ, Zhang XL, Fang Y, Xie WR, Xie YK. Sialic acid contributes to hyperexcitability of dorsal root ganglion neurons in rats with peripheral nerve injury. Brain Res. 2004;1026(2):185–93.PubMedCrossRefGoogle Scholar
  53. Qiao GF, Cheng ZF, Huo R, Sui XH, Lu YJ, Li BY. GM1 ganglioside contributes to retain the neuronal conduction and neuronal excitability in visceral and baroreceptor afferents. J Neurochem. 2008;106:1637–45.PubMedCrossRefGoogle Scholar
  54. Quattrini A, Lorenzetti I, Sciorati C, Corbo M, Previtali SC, Feltri ML, et al. Human IgM anti-GM1 autoantibodies modulate intracellular calcium homeostasis in neuroblastoma cells. J Neuroimmunol. 2001;114:213–9.PubMedCrossRefGoogle Scholar
  55. Roberts RH, Barchi RL. The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. J Biol Chem. 1987;262:2298–303.PubMedGoogle Scholar
  56. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG. Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci. 2001;21:8387–95.PubMedGoogle Scholar
  57. Rutishauser U, Landmesser L. Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci. 1996;19:422–7.PubMedCrossRefGoogle Scholar
  58. Sandoval A, Oviedo N, Andrade A, Felix R. Glycosylation of asparagines 136 and 184 is necessary for the alpha2delta subunit-mediated regulation of voltage-gated Ca2+ channels. FEBS Lett. 2004;576:21–6.PubMedCrossRefGoogle Scholar
  59. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, et al. GM1 ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol Cell. 2009;36:500–11.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schengrund C-L, Ringler NJ. Binding of Vibrio cholera toxin and the heat labile enterotoxin of Escherichia coli to GM1 and derivatives of GM1, and nonlipid, oligosaccharide polyvalent ligands. J Biol Chem. 1989;264:13233–7.PubMedGoogle Scholar
  61. Schmidt JW, Catterall WA. Palmitylation, sulfation, and glycosylation of the alpha subunit of the sodium channel. Role of post-translational modifications in channel assembly. J Biol Chem. 1987;262:13713–23.PubMedGoogle Scholar
  62. Schwetz TA, Norring SA, Ednie AR, Bennett ES. Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating. J Biol Chem. 2011;286:4123–32.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Shen KF, Crain SM. Dual modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 1989;491:227–42.PubMedCrossRefGoogle Scholar
  64. Siebert HC, André S, Lu SY, Frank M, Kaltner H, van Kuik JA, et al. Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry. 2003;42:14762–73.PubMedCrossRefGoogle Scholar
  65. Skoff AM, Benjamins JA. Antibodies to glycolipids and cholera toxin B subunit do not initiate Ca2+ signaling in rat Schwann cells. J Peripher Nerv Syst. 1998;3:19–27.PubMedGoogle Scholar
  66. Stocker PJ, Bennett ES. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. J Gen Physiol. 2006;127:253–65.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sumikawa K, Miledi R. Assembly and N-glycosylation of all ACh receptor subunits are required for their efficient insertion into plasma membranes. Brain Res Mol Brain Res. 1989;5:183–92.PubMedCrossRefGoogle Scholar
  68. Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci. 2007a;27:3956–67.PubMedCrossRefGoogle Scholar
  69. Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, Hirata K, et al. Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia. 2007b;55:746–57.PubMedCrossRefGoogle Scholar
  70. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, et al. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A. 1996;93:10662–7.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Tang C-M, Presser F, Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science. 1988;240:213–5.PubMedCrossRefGoogle Scholar
  72. Tessitore A, del P Martin M, Sano R, Ma Y, Mann L, Ingrassia A, et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell. 2004;15:753–66.PubMedCrossRefGoogle Scholar
  73. Thornhill WB, Wu MB, Jiang X, Wu X, Morgan PT, Margiotta JF. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem. 1996;271:19093–8.PubMedCrossRefGoogle Scholar
  74. Tyrrell L, Renganathan M, Dib-Hajj SD, Waxman SG. Glycosylation alters steady-state inactivation of sodium channel Nav 1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J Neurosci. 2001;21(24):9629–37.PubMedGoogle Scholar
  75. Waechter CJ, Schmidt JW, Catterall WA. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem. 1983;258:5117–23.PubMedGoogle Scholar
  76. Wang Y, Tsui Z, Yang F. Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum Ca2+-ATPase. FEBS Lett. 1999a;457:144–8.PubMedCrossRefGoogle Scholar
  77. Wang Y, Tsui Z, Yang F. Mechanistic study of modulation of SR Ca2+-ATPase activity by gangliosides GM1 and GM3 through some biophysical measurements. Glycoconj J. 1999b;16:781–6.PubMedCrossRefGoogle Scholar
  78. Wang J, Lu Z-H, Gabius H-J, Rolhowsky-Kochan C, Ledeen RW, Wu G. Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol. 2009a;182:4036–45.PubMedCrossRefGoogle Scholar
  79. Wang J, Wu G, Miyagi T, Lu Z-H, Ledeen RW. Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem. 2009b;111:547–54.PubMedCrossRefGoogle Scholar
  80. Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB. Glycosylation affects the protein stability and cell surface expression of Kv1.4 but not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. J Biol Chem. 2004;279:8879–85.PubMedCrossRefGoogle Scholar
  81. Wirkner K, Hognestad H, Jahnel R, Hucho F, Illes P. Characterization of rat transient receptor potential vanilloid 1 receptors lacking the N-glycosylation site N604. Neuroreport. 2005;16:997–1001.PubMedCrossRefGoogle Scholar
  82. Wu G, Ledeen RW. Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase: putative role of GM1 ganglioside in differentiation. J Neurochem. 1991;56:95–104.PubMedCrossRefGoogle Scholar
  83. Wu G, Ledeen RW. Gangliosides as modulators of neuronal calcium. Prog Brain Res. 1994;101:101–12.PubMedCrossRefGoogle Scholar
  84. Wu G, Vaswani KK, Lu Z-H, Ledeen RW. Gangliosides stimulate calcium flux in Neuro-2A cells and require exogenous calcium for neuritogenesis. J Neurochem. 1990;55:484–91.PubMedCrossRefGoogle Scholar
  85. Wu G, Lu Z-H, Nakamura K, Spray DC, Ledeen RW. Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: modulation of intracellular calcium by GM1 ganglioside. J Neurosci Res. 1996;44:243–54.PubMedCrossRefGoogle Scholar
  86. Wu G, Lu Z-H, Ledeen RW. Interaction of the δ-opioid receptor with GM1 ganglioside: conversion from inhibitory to excitatory mode. Brain Res Mol Brain Res. 1997a;44:341–6.PubMedCrossRefGoogle Scholar
  87. Wu G, Lu Z-H, Alfinito P, Ledeen RW. Opioid receptor and calcium channel regulation of adenylyl cyclase, modulated by GM1, in NG108-15 cells: competitive interactions. Neurochem Res. 1997b;22:1281–9.PubMedCrossRefGoogle Scholar
  88. Wu G, Fang Y, Lu Z-H, Ledeen RW. Induction of axon-like and dendrite-like processes in neuroblastoma cells. J Neurocytol. 1998a;27:1–14.PubMedCrossRefGoogle Scholar
  89. Wu G, Lu ZH, Wei TJ, Howells RD, Christoffers K, Ledeen RW. The role of GM1 ganglioside in regulating excitatory opioid effects. Ann N Y Acad Sci. 1998b;845:126–38.PubMedCrossRefGoogle Scholar
  90. Wu G, Xie X, Lu Z-H, Ledeen RW. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci U S A. 2001;98:307–12.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Wu G, Lu ZH, Wang J, Wang Y, Xie X, Meyenhofer MF, et al. Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraosegangliosides: protection with LIGA20, a membrane-permeant analog of GM1. J Neurosci. 2005;25:11014–22.PubMedCrossRefGoogle Scholar
  92. Wu G, Lu Z-H, Obukhov ASG, Nowycky MC, Ledeen RW. Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with α5β1 integrin initiates neurite outgrowth. J Neurosci. 2007;27:7447–58.PubMedCrossRefGoogle Scholar
  93. Wu G, Xie X, Lu Z-H, Ledeen RW. Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci U S A. 2009;106:10829–34.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wu G, Lu Z-H, Gabius H-J, Ledeen RW, Bleich D. Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes. 2011;60:2341–9.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Xie X, Wu G, Lu Z-H, Ledeen RW. Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem. 2002;81:1185–95.PubMedCrossRefGoogle Scholar
  96. Xie X, Wu G, Lu Z-H, Rohowsky-Kochan C, Ledeen RW. Presence of sodium-calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: nature of the exchanger-GM1 interaction. Neurochem Res. 2004;29:2135–46.PubMedCrossRefGoogle Scholar
  97. Zhang J, Zhao Y, Duan J, Yang F, Zhang X. Gangliosides activate the phosphatase activity of the erythrocyte plasma membrane Ca2+-ATPase. Arch Biochem Biophys. 2005;444:1–6.PubMedCrossRefGoogle Scholar
  98. Zhao Y, Fan X, Yang F, Zhang Z. Gangliosides modulate the activity of the plasma membrane Ca2+-ATPase from porcine brain synaptosomes. Arch Biochem Biophys. 2004;427:204–12.PubMedCrossRefGoogle Scholar
  99. Zhou TT, Zhang ZW, Liu J, Zhang JP, Jiao BH. Glycosylation of the sodium channel β4 subunit is developmentally regulated and involves in neuritic degeneration. Int J Biol Sci. 2012;8:630–9.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Zona C, Eusebi F, Miledi R. Glycosylation is required for maintenance of functional voltage-activated channels in growing neocortical neurons of the rat. Proc R Soc Lond B Biol Sci. 1990;239:119–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martha C. Nowycky
    • 1
    Email author
  • Gusheng Wu
    • 2
  • Robert W. Ledeen
    • 2
    • 1
  1. 1.Department of Pharmacology and Physiology, RBHS, New Jersey Medical SchoolThe State University of New JerseyNewarkUSA
  2. 2.Department of Neurology and Neurosciences of Rutgers, RBHS, New Jersey Medical SchoolThe State University of New JerseyNewarkUSA

Personalised recommendations