From Ionizing Radiation to Photosynthesis

  • Alexander N. Melkozernov
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 11)


This chapter focuses on the driving forces of the origin and the evolution of the early anoxygenic photosynthesis before the onset of the oxygenic cyanobacterial photosynthesis 2.8–2.4 billion years ago. The early Earth conditions were sustained by the global cycling of carbon dioxide among the atmosphere, primordial crust, and the ocean. High-energy ultraviolet radiation played a decisive role in this interaction, maintaining the temperature of the ocean and promoting mildly oxidizing conditions in the atmosphere and the upper layers of the ocean. Constrained by the sterilizing effect of the UV radiation and the evaporating consequences of the Late Heavy Bombardment, chemolithotrophic life was likely to emerge at the seafloor under excess of carbon dioxide and a constant flux of reducing hydrothermal fluids. Trophic diversification had launched the expansion of the chemolithotrophic lineages to the photic zone. Alternative hypotheses of the terrestrial origin of life with implications for the origin of photosynthesis are discussed. The review reconstructs the development of the ancient photosynthetic habitats under the strong selective pressure of the UV radiation and discusses available hypotheses of the origin of photosynthesis with regard to emergence of workable photosynthetic mechanism. The evolution of the homodimeric proto-photosystem and its divergence to the homodimeric iron–sulfur-type and the homodimeric quinone-type reaction centers were probably driven by the availability of the exogenous electron donors in a series of ecological successions from the oceanic photic zone to the shallow water habitats and microbial mats. This process had eventually resulted in the advent of independence of the photosynthetic organisms from the geochemical conditions in cyanobacterial lineages that were able to oxidize water.


Photosynthesis Evolution Chemoautotrophy Photoautotrophy UV selective pressure Reaction center Photosystem I Photosystem II 







Banded iron formations




Chlorophyllide oxidoreductase






Giga annum


Great Oxidation Event


Last unified common ancestor


Photosystem I


Photosystem II


Protochlorophyllide oxidoreductase




Reaction center


Reductive tricarboxylic acid cycle


Uroporphyrinogen III





The author is thankful to Professor Anthony Larkum and an anonymous reviewer for critical reading of the manuscript and insightful suggestions.


  1. 1.
    von Bloh W, Cuntz M, Schroder KP, Bounama C, Franck S. Habitability of super-earth planets around other suns: models including red giant branch evolution. Astrobiology. 2009;9(6):593–602.ADSGoogle Scholar
  2. 2.
    Cockell CS, Raven JA, Kaltenegger L, Logan RC. Planetary targets in the search for extrasolar oxygenic photosynthesis. Plant Ecol Diver. 2009;2(2):207–19. doi: 10.1080/17550870903329328.Google Scholar
  3. 3.
    Kasting JF. The primitive Earth. In: Wong JT-F, Lazcano A, editors. Prebiotic evolution and astrobiology. Austin, TX: Landes Biosciences; 2008. p. 1–8.Google Scholar
  4. 4.
    Rothschild LJ. The evolution of photosynthesis … again? Phil Trans Roy Soc B Biol Sci. 2008;363(1504):2787–801.Google Scholar
  5. 5.
    Deamer DW. The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev. 1997;61(2):239–61.Google Scholar
  6. 6.
    Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature. 1992;355(6356):125–32. doi: 10.1038/355125a0.ADSGoogle Scholar
  7. 7.
    Pope EC, Bird DK, Rosing MT. Isotope composition and volume of Earth’s early oceans. Proc Natl Acad Sci. 2012;109(12):4371–6.ADSGoogle Scholar
  8. 8.
    Nisbet EG, Sleep NH. The habitat and nature of early life. [Review]. Nature. 2001;409(6823):1083–91.ADSGoogle Scholar
  9. 9.
    McGuinness ET. Some molecular moments of the Hadean and Archaean aeons: a retrospective overview from the interfacing years of the second to third millennia. Chem Rev. 2010;110(9):5191–215. doi: 10.1021/cr050061l.Google Scholar
  10. 10.
    Montmerle T. The formation of solar type stars: boundary conditions for the origin of life? In: Gargoud M, Barbier B, Martin H, Reisse J, editors. Lectures in astrobiology. Berlin: Springer; 2005. p. 29–59.Google Scholar
  11. 11.
    Wood BJ, Walter MJ, Wade J. Accretion of the Earth and segregation of its core. Nature. 2006;441(7095):825–33. doi: 10.1038/nature04763.ADSGoogle Scholar
  12. 12.
    Harrison TM. The Hadean crust: evidence from > 4 Ga zircons. Annual review of earth and planetary sciences. Palo Alto, CA: Annual Reviews; 2009. p. 479–505.Google Scholar
  13. 13.
    Taylor SR, McLennan SM. The geochemical evolution of the continental crust. [Review]. Rev Geophys. 1995;33(2):241–65.ADSGoogle Scholar
  14. 14.
    Claire MW, Sheets J, Cohen M, Ribas I, Meadows VS, Catling DC. The Evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys J. 2012;757(1):95.ADSGoogle Scholar
  15. 15.
    Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature. 1989;342(6246):139–42. doi: 10.1038/342139a0.ADSGoogle Scholar
  16. 16.
    Lammer H, Kislyakova KG, Odert P, Leitzinger M, Schwarz R, Pilat-Lohinger E, et al. Pathways to Earth-like atmospheres. Orig Life Evol Biosph. 2011;41(6):503–22.ADSGoogle Scholar
  17. 17.
    Martine H. Genesis and evolution of the primitive Earth continental crust. In: Gargoud M, Barbier B, Martin H, Reisse J, editors. Lectures in astrobiology. Berlin: Springer; 2005. p. 113–63.Google Scholar
  18. 18.
    Elkins-Tanton L. Formation of early water oceans on rocky planets. Astrophys Space Sci. 2011;332(2):359–64.ADSGoogle Scholar
  19. 19.
    Wilde SA, Valley JW, Peck WH, Graham CM. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature. 2001;409(6817):175–8.ADSGoogle Scholar
  20. 20.
    Pinti DL. The origin and evolution of the oceans. In: Gargoud M, Barbier B, Martin H, Reisse J, editors. Lectures in astrobiology. Berlin: Springer; 2005. p. 83–112.Google Scholar
  21. 21.
    Farquhar J. Atmospheric evolution, Earth. In: Gornitz V, editor. Encyclopedia of paleoclimatology and ancient environments. Dordrecht, The Netherlands: Springer; 2009. p. 61–5.Google Scholar
  22. 22.
    Shibuya T, Tahata M, Kitajima K, Ueno Y, Komiya T, Yamamoto S, et al. Depth variation of carbon and oxygen isotopes of calcites in Archean altered upper oceanic crust: Implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth Planet Sci Lett. 2012;321:64–73.ADSGoogle Scholar
  23. 23.
    Kasting JF, Howard MT, Wallmann K, Veizer J, Shields G, Jaffres J. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett. 2006;252(1–2):82–93.ADSGoogle Scholar
  24. 24.
    Catling DC, Claire MW. How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett. 2005;237(1–2):1–20. doi: 10.1016/j.epsl.2005.06.013.ADSGoogle Scholar
  25. 25.
    Hawkesworth CJ, Kemp AIS. Evolution of the continental crust. [Review]. Nature. 2006;443(7113):811–7.ADSGoogle Scholar
  26. 26.
    Van Kranendonk MJ. Onset of plate tectonics. Science. 2011;333(6041):413–4.ADSGoogle Scholar
  27. 27.
    Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD. A change in the geodynamics of continental growth 3 billion years ago. Science. 2012;335(6074):1334–6.ADSGoogle Scholar
  28. 28.
    Gaillard F, Scaillet B, Arndt NT. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature. 2011;478(7368):229–32. doi: 10.1038/nature10460.ADSGoogle Scholar
  29. 29.
    Mojzsis SJ. Early Earth. Leftover lithosphere. Nat Geosci. 2010;3(3):148–9.ADSGoogle Scholar
  30. 30.
    Scaillet B, Gaillard F. Earth science: redox state of early magmas. Nature. 2011;480(7375):48–9. doi: 10.1038/480048a.ADSGoogle Scholar
  31. 31.
    Trail D, Watson EB, Tailby ND. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature. 2011;480(7375):79–82. doi: 10.1038/nature10655.ADSGoogle Scholar
  32. 32.
    Dartnell LR. Ionizing radiation and life. [Review]. Astrobiology. 2011;11(6):551–82.ADSGoogle Scholar
  33. 33.
    Jardine M. Sunscreen for the Young Earth. Science. 2010;327(5970):1206–7.ADSGoogle Scholar
  34. 34.
    Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV, Mamajek EE, et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science. 2010;327(5970):1238–40.ADSGoogle Scholar
  35. 35.
    Cockell CS, Raven JA. Ozone and life on the Archaean Earth. Phil Trans Roy Soc A Math Phys Eng Sci. 2007;365(1856):1889–901.ADSGoogle Scholar
  36. 36.
    Ribas I, Guinan EF, Güdel M, Audard M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys J. 2005;622(1):680–94.ADSGoogle Scholar
  37. 37.
    Gomes R, Levison HF, Tsiganis K, Morbidelli A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 2005;435(7041):466–9. doi: 10.1038/nature03676.ADSGoogle Scholar
  38. 38.
    Edwards KJ, Wheat CG, Sylvan JB. Under the sea: microbial life in volcanic oceanic crust. Nat Rev Micro. 2011;9(10):703–12. doi: 10.1038/nrmicro2647.Google Scholar
  39. 39.
    Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8(5):355–71.Google Scholar
  40. 40.
    Sleep NH, Bird DK, Pope EC. Serpentinite and the dawn of life. Phil Trans Roy Soc B Biol Sci. 2011;366(1580):2857–69.Google Scholar
  41. 41.
    Falkowski PG. 8.05 - Biogeochemistry of primary production in the sea. In: Heinrich DH, Karl KT, editors. Treatise on geochemistry. Oxford: Pergamon; 2003. p. 185–213.Google Scholar
  42. 42.
    Holden JF, Breier JA, Rogers KL, Schulte MD, Toner BM. Biogeochemical processes at hydrothermal vents: microbes and minerals, bioenergetics, and carbon fluxes. Oceanography. 2012;25(1):196–208.Google Scholar
  43. 43.
    Arndt NT, Nisbet EG. Processes on the Young Earth and the habitats of early life. Annu Rev Earth Planet Sci. 2012;40(1):521–49.ADSGoogle Scholar
  44. 44.
    Lane N, Martin WF. The origin of membrane bioenergetics. Cell. 2012;151(7):1406–16.Google Scholar
  45. 45.
    Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Micro. 2008;6(11):805–14. doi: 10.1038/nrmicro1991.Google Scholar
  46. 46.
    Alpermann T, Rüdel K, Rüger R, Steiniger F, Nietzsche S, Filiz V, et al. Polymersomes containing iron sulfide (FeS) as primordial cell model. Orig Life Evol Biosph. 2011;41(2):103–19.ADSGoogle Scholar
  47. 47.
    Mielke RE, Robinson KJ, White LM, McGlynn SE, McEachern K, Bhartia R, Kanik I, Russell MJ. Iron-sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence. Astrobiology. 2011;11(10):933–50.ADSGoogle Scholar
  48. 48.
    Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys Life Rev. 2012;9(1):84–104.ADSGoogle Scholar
  49. 49.
    Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans Roy Soc B Biol Sci. 2007;362(1486):1887–926.Google Scholar
  50. 50.
    Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005;21(12):647–54. doi: 10.1016/j.tig.2005.09.006.Google Scholar
  51. 51.
    Baymann F, Lebrun E, Brugna M, Schoepp–Cothenet B, Giudici–Orticoni MT, Nitschke W. The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):267–74.Google Scholar
  52. 52.
    Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau A-L, et al. On the universal core of bioenergetics. Biochim Biophys Acta Bioenerg. 2013;1827(2):79–93.Google Scholar
  53. 53.
    Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays. 2010;32(4):271–80.Google Scholar
  54. 54.
    Martin WF. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett. 2012;586(5):485–93. doi: 10.1016/j.febslet.2011.09.031.Google Scholar
  55. 55.
    Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77(6):1925–36.Google Scholar
  56. 56.
    Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol. 2011;65(1):631–58.Google Scholar
  57. 57.
    Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol. 2007;9(1):81–92.Google Scholar
  58. 58.
    Tang K-H, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. [Review]. Front Microbiol. 2011;2:165.Google Scholar
  59. 59.
    Thauer RK. A fifth pathway of carbon fixation. Science. 2007;318(5857):1732–3.Google Scholar
  60. 60.
    Braakman R, Smith E. The emergence and early evolution of biological carbon-fixation. PLoS Comput Biol. 2012;8(4):e1002455. doi: 10.1371/journal.pcbi.1002455.ADSGoogle Scholar
  61. 61.
    Morowitz H. Beginnings of cellular life: Metabolism recaptures biochemistry. New Haven, CT: Yale University Press; 1992.Google Scholar
  62. 62.
    Hugler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. In: Carlson CA, Giovannoni SJ, editors. Annual review of marine science, vol. 3. Palo Alto, CA: Annual Reviews; 2011. p. 261–89.Google Scholar
  63. 63.
    Davenport C, Ussery D, Tümmler B. Comparative genomics of green sulfur bacteria. Photosynth Res. 2010;104(2):137–52.Google Scholar
  64. 64.
    Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, et al. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci. 2002;99(14):9509–14.ADSGoogle Scholar
  65. 65.
    Campbell BJ, Cary SC. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol. 2004;70(10):6282–9.Google Scholar
  66. 66.
    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Micro. 2006;4(6):458–68. doi: 10.1038/nrmicro1414.Google Scholar
  67. 67.
    Sievert SM, Vetriani C. Chemoautotrophy at deep-sea vents past, present, and future. Oceanography. 2012;25(1):218–33.Google Scholar
  68. 68.
    Bar-Even A, Flamholz A, Noor E, Milo R. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim Biophys Acta Bioenerg. 2012;1817(9):1646–59. doi: 10.1016/j.bbabio.2012.05.002.Google Scholar
  69. 69.
    Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Micro. 2010;8(6):447–60. doi: 10.1038/nrmicro2365.Google Scholar
  70. 70.
    Brüssow H. The not so universal tree of life or the place of viruses in the living world. Phil Trans Roy Soc B Biol Sci. 2009;364(1527):2263–74.Google Scholar
  71. 71.
    Ducluzeau A-L, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W. Was nitric oxide the first deep electron sink? Trends Biochem Sci. 2009;34(1):9–15. doi: 10.1016/j.tibs.2008.10.005.Google Scholar
  72. 72.
    Giacometti G, Giacometti G. Evolution of photosynthesis and respiration: which came first? Appl Magn Reson. 2010;37(1):13–25.MathSciNetGoogle Scholar
  73. 73.
    Fontecilla-Camps JC, Amara P, Cavazza C, Nicolet Y, Volbeda A. Structure–function relationships of anaerobic gas-processing metalloenzymes. Nature. 2009;460(7257):814–22. doi: 10.1038/nature08299.ADSGoogle Scholar
  74. 74.
    Rees DC, Howard JB. The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science. 2003;300(5621):929–31.ADSGoogle Scholar
  75. 75.
    Meyer J. Iron–sulfur protein folds, iron–sulfur chemistry, and evolution. J Biol Inorg Chem. 2008;13(2):157–70.Google Scholar
  76. 76.
    Rickard D, Luther GW. Chemistry of iron sulfides. Chem Rev. 2007;107(2):514–62. doi: 10.1021/cr0503658.Google Scholar
  77. 77.
    Nitschke W, Russell MJ. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. [Review]. J Mol Evol. 2009;69(5):481–96.Google Scholar
  78. 78.
    Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter K-O, et al. Early evolution of cytochrome bc complexes. J Mol Biol. 2000;300(4):663–75. doi: 10.1006/jmbi.2000.3915.Google Scholar
  79. 79.
    Mauzerall D. Oceanic photochemistry and evolution of elements and cofactors in the early stages of the evolution of life. In: Falkowski PG, Knoll AH, editors. Evolution of primary producers in the sea. London: Elsevier Academic Press; 2007. p. 7–21.Google Scholar
  80. 80.
    Abramov O, Mojzsis SJ. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature. 2009;459(7245):419–22. doi: 10.1038/nature08015.ADSGoogle Scholar
  81. 81.
    Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci. 2012;109(14):E821–30.ADSGoogle Scholar
  82. 82.
    Chittenden G, Schwartz A. Prebiotic photosynthetic reactions. Biosystems. 1981;14(1):15–32.Google Scholar
  83. 83.
    Inoue T, Fujishima A, Konishi S, Honda K. Potoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature. 1979;277(5698):637–8.ADSGoogle Scholar
  84. 84.
    Guzman MI, Martin ST. Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology. 2009;9(9):833–42.ADSGoogle Scholar
  85. 85.
    Saladino R, Brucato JR, Sio AD, Botta G, Pace E, Gambicorti L. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide. Astrobiology. 2011;11(8):815–24.ADSGoogle Scholar
  86. 86.
    Wang W, Li Q, Yang B, Liu X, Yang Y, Su W. Photocatalytic reversible amination of alpha-keto acids on a ZnS surface: implications for the prebiotic metabolism. Chem Commun. 2012;48(15):2146–8.Google Scholar
  87. 87.
    Zhang XV, Ellery SP, Friend CM, Holland HD, Michel FM, Schoonen MAA, et al. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: Implications for prebiotic synthesis. J Photochem Photobiol Chem. 2007;185(2–3):301–11.Google Scholar
  88. 88.
    Zhang XV, Martin ST. Driving parts of Krebs cycle in reverse through mineral photochemistry. J Am Chem Soc. 2006;128(50):16032–3. doi: 10.1021/ja066103k.Google Scholar
  89. 89.
    Gilbert W. Origin of life: the RNA world. Nature. 1986;319(6055):618. doi: 10.1038/319618a0.ADSGoogle Scholar
  90. 90.
    Granick S. Speculations on the origins and evolution of photosynthesis. Ann N Y Acad Sci. 1957;69(2):292–308.ADSGoogle Scholar
  91. 91.
    Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL. Evidence for life on Earth before 3,800 million years ago. Nature. 1996;384(6604):55–9.ADSGoogle Scholar
  92. 92.
    Rosing MT. C-13-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from west Greenland. Science. 1999;283(5402):674–6.ADSGoogle Scholar
  93. 93.
    Schidlowski M. A 3,800-million-year isotopic record of life from carbon in sedimentary-rocks. [Review]. Nature. 1988;333(6171):313–8.ADSGoogle Scholar
  94. 94.
    Brasier M, McLoughlin N, Green O, Wacey D. A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans Roy Soc B Biol Sci. 2006;361(1470):887–902.Google Scholar
  95. 95.
    Farquhar J, Zerkle A, Bekker A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res. 2011;107(1):11–36.Google Scholar
  96. 96.
    Tice MM, Lowe DR. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature. 2004;431(7008):549–52. doi: 10.1038/nature02888.ADSGoogle Scholar
  97. 97.
    Tice MM, Lowe DR. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology. 2006;34(1):37–40.ADSGoogle Scholar
  98. 98.
    Hickman AH. Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. [Review]. Island Arc. 2012;21(1):1–31.Google Scholar
  99. 99.
    Mloszewska AM, Pecoits E, Cates NL, Mojzsis SJ, O’Neil J, Robbins LJ, et al. The composition of Earth’s oldest iron formations: the Nuvvuagittuq Supracrustal Belt (Quebec, Canada). Earth Planet Sci Lett. 2012;317:331–42.ADSGoogle Scholar
  100. 100.
    Konhauser KO, Amskold L, Lalonde SV, Posth NR, Kappler A, Anbar A. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett. 2007;258(1–2):87–100.ADSGoogle Scholar
  101. 101.
    Bird LJ, Bonnefoy V, Newman DK. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 2011;19(7):330–40. doi: 10.1016/j.tim.2011.05.001.Google Scholar
  102. 102.
    Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, et al. Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci. 2008;105(41):15938–43.ADSGoogle Scholar
  103. 103.
    Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64(1):561–83.Google Scholar
  104. 104.
    Jiao Y, Kappler A, Croal LR, Newman DK. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol. 2005;71(8):4487–96.Google Scholar
  105. 105.
    Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M. Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton of Australia. Nature. 1995;375(6532):574–7.ADSGoogle Scholar
  106. 106.
    Bapteste E, Brochier C, Boucher Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea. 2005;1(5):353–63.Google Scholar
  107. 107.
    Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 2006;440(7083):516–9. doi: 10.1038/nature04584.ADSGoogle Scholar
  108. 108.
    Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science. 2007;317(5844):1534–7.ADSGoogle Scholar
  109. 109.
    Shen Y, Buick R, Canfield DE. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature. 2001;410(6824):77–81. doi: 10.1038/35065071.ADSGoogle Scholar
  110. 110.
    Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci. 2011;4(10):698–702.ADSGoogle Scholar
  111. 111.
    Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, et al. Controls on development and diversity of Early Archean stromatolites. Proc Natl Acad Sci. 2009;106(24):9548–55.ADSGoogle Scholar
  112. 112.
    Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW. Stromatolite reef from the Early Archaean era of Australia. Nature. 2006;441(7094):714–8. doi: 10.1038/nature04764.ADSGoogle Scholar
  113. 113.
    Beukes N. Biogeochemistry: early options in photosynthesis. Nature. 2004;431(7008):522–3. doi: 10.1038/431522b.ADSGoogle Scholar
  114. 114.
    Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud JN, Simionovici A, et al. Implications of in situ calcification for photosynthesis in a similar to 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett. 2011;310(3–4):468–79.ADSGoogle Scholar
  115. 115.
    Cockell C. Ultraviolet radiation and the photobiology of earth’s early oceans. Orig Life Evol Biosph. 2000;30(5):467–500.ADSGoogle Scholar
  116. 116.
    Cockell CS. Biological effects of high ultraviolet radiation on early earth—a theoretical evaluation. J Theor Biol. 1998;193(4):717–29. doi: 10.1006/jtbi.1998.0738.Google Scholar
  117. 117.
    Canfield DE, Rosing MT, Bjerrum C. Early anaerobic metabolisms. Phil Trans Roy Soc B Biol Sci. 2006;361(1474):1819–36.Google Scholar
  118. 118.
    Kharecha P, Kasting J, Siefert J. A coupled atmosphere-ecosystem model of the early Archean Earth. [Review]. Geobiology. 2005;3(2):53–76.Google Scholar
  119. 119.
    Sleep NH, Bird DK. Evolutionary ecology during the rise of dioxygen in the Earth’s atmosphere. Phil Trans Roy Soc B Biol Sci. 2008;363(1504):2651–64.Google Scholar
  120. 120.
    Nisbet EG, Fowler CMR. Archaean metabolic evolution of microbial mats. Proc Roy Soc Lond Ser B Biol Sci. 1999;266(1436):2375–82.Google Scholar
  121. 121.
    Beblo K, Douki T, Schmalz G, Rachel R, Wirth R, Huber H, et al. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol. 2011;193(11):797–809.Google Scholar
  122. 122.
    Gómez F, Aguilera A, Amils R. Soluble ferric iron as an effective protective agent against UV radiation: implications for early life. Icarus. 2007;191(1):352–9. doi: 10.1016/j.icarus.2007.04.008.ADSGoogle Scholar
  123. 123.
    Hader DP, Kumar HD, Smith RC, Worrest RC. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci. 2007;6(3):267–85.Google Scholar
  124. 124.
    Weibel DB. Building communities one bacterium at a time. Proc Natl Acad Sci. 2008;105(47):18075–6.ADSGoogle Scholar
  125. 125.
    Russell MJ, Arndt NT. Geodynamic and metabolic cycles in the Hadean. Biogeosci Disc. 2004;1(1):591–624.ADSGoogle Scholar
  126. 126.
    Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, et al. Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans Roy Soc B Biol Sci. 2006;361(1474):1857–76.Google Scholar
  127. 127.
    Tice MM, Thornton DCO, Pope MC, Olszewski TD, Gong J. Archean microbial mat communities. In: Jeanloz R, Freeman KH, editors. Annual review of earth and planetary sciences, vol. 39. Palo Alto, CA: Annual Reviews; 2011. p. 297–319.Google Scholar
  128. 128.
    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–9.ADSGoogle Scholar
  129. 129.
    Chew AGM, Bryant DA. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol. 2007;61(1):113–29.Google Scholar
  130. 130.
    Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys. 2008;474(2):238–51.Google Scholar
  131. 131.
    Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol. 2013;5(1):200–16.Google Scholar
  132. 132.
    Bali S, Lawrence AD, Lobo SA, Saraiva LM, Golding BT, Palmer DJ, et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc Natl Acad Sci. 2011;108(45):18260–5.ADSGoogle Scholar
  133. 133.
    Hennig SE, Jeoung JH, Goetzl S, Dobbek H. Redox-dependent complex formation by an ATP-dependent activator of the corrinoid/iron-sulfur protein. Proc Natl Acad Sci U S A. 2012;109(14):5235–40.ADSGoogle Scholar
  134. 134.
    Holliday GL, Thornton JM, Marquet A, Smith AG, Rebeille F, Mendel R, et al. Evolution of enzymes and pathways for the biosynthesis of cofactors. Nat Prod Rep. 2007;24(5):972–87.Google Scholar
  135. 135.
    Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci. 2008;7(10):1131–49.Google Scholar
  136. 136.
    Lundqvist J, Elmlund D, Heldt D, Deery E, Söderberg CAG, Hansson M, et al. The AAA + motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. J Struct Biol. 2009;167(3):227–34.Google Scholar
  137. 137.
    Jaschke PR, Hardjasa A, Digby EL, Hunter CN, Beatty JT. A bchD (magnesium chelatase) mutant of Rhodobacter sphaeroides synthesizes zinc bacteriochlorophyll through novel zinc-containing intermediates. J Biol Chem. 2011;286(23):20313–22.Google Scholar
  138. 138.
    Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30(1):409–25.Google Scholar
  139. 139.
    Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, et al. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature. 2010;465(7294):110–4. doi: 10.1038/nature08950.ADSGoogle Scholar
  140. 140.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21(3):541–54.Google Scholar
  141. 141.
    Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci. 1998;23(3):94–7.Google Scholar
  142. 142.
    Larkum AWD. The evolution of photosynthesis. In: Renger G, editor. Primary processes of photosynthesis, Part 2: Principles and apparatus. Cambridge: RSC Publishing; 2008. p. 491–521.Google Scholar
  143. 143.
    Lindsey J, Ptaszek M, Taniguchi M. Simple formation of an abiotic porphyrinogen in aqueous solution. Orig Life Evol Biosph. 2009;39(6):495–515.ADSGoogle Scholar
  144. 144.
    Lindsey JS, Chandrashaker V, Taniguchi M, Ptaszek M. Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New J Chem. 2011;35(1):65–75.Google Scholar
  145. 145.
    Mercer-Smith JA, Mauzerall DC. Photochemistry of porphyrins: a model for the origin of photosynthesis. Photochem Photobiol. 1984;39(3):397–405.Google Scholar
  146. 146.
    Scheer H. An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and application. In: Grimm B, Porra RJ, Ruduger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht, The Netherlands: Springer; 2006. p. 1–26.Google Scholar
  147. 147.
    Krasnovsky AA. Chemical evolution of photosynthesis. Orig Life Evol Biosph. 1976;7(2):133–43.Google Scholar
  148. 148.
    Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS. Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chem Sci. 2012;3(6):1963–74.Google Scholar
  149. 149.
    Mauzerall DC. Evolution of porphyrins. Clin Dermatol. 1998;16(2):195–201.Google Scholar
  150. 150.
    Mulkidjanian AY, Junge W. On the origin of photosynthesis as inferred from sequence analysis - A primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynth Res. 1997;51(1):27–42.Google Scholar
  151. 151.
    Larkum AWD. The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Ruduger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht: Springer; 2006. p. 261–82.Google Scholar
  152. 152.
    Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, et al. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci. 2006;103(35):13126–31.ADSGoogle Scholar
  153. 153.
    Melkozernov AN, Blankenship RE. Photosynthetic functions of chlorophylls. In: Grimm B, Porra RJ, Ruduger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht, The Netherlands: Springer; 2006. p. 397–412.Google Scholar
  154. 154.
    Wakeham MC, Frolov D, Fyfe PK, van Grondelle R, Jones MR. Acquisition of photosynthetic capacity by a reaction centre that lacks the QA ubiquinone; possible insights into the evolution of reaction centres? Biochim Biophys Acta Bioenerg. 2003;1607(1):53–63. doi: 10.1016/j.bbabio.2003.08.008.Google Scholar
  155. 155.
    Van Dover CL, Reynolds GT, Chave AD, Tyson JA. Light at deep-sea hydrothermal vents. Geophys Res Lett. 1996;23(16):2049–52.ADSGoogle Scholar
  156. 156.
    Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A. 2005;102(26):9306–10.ADSGoogle Scholar
  157. 157.
    Nisbet EG, Cann JR, Vandover CL. Origins of photosynthesis. Nature. 1995;373(6514):479–80.ADSGoogle Scholar
  158. 158.
    Caetano-Anollés G, Kim HS, Mittenthal JE. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci. 2007;104(22):9358–63.ADSGoogle Scholar
  159. 159.
    Pohorille A, Wilson MA, Chipot C. Membrane peptides and their role in protobiological evolution. [Review]. Orig Life Evol Biosph. 2003;33(2):173–97.ADSGoogle Scholar
  160. 160.
    Bowie JU. Solving the membrane protein folding problem. Nature. 2005;438(7068):581–9. doi: 10.1038/nature04395.ADSGoogle Scholar
  161. 161.
    Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ. Internal packing of helical membrane proteins. Proc Natl Acad Sci. 2000;97(11):5796–801.ADSGoogle Scholar
  162. 162.
    Xiong J, Bauer CE. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol. 2002;322(5):1025–37. doi: 10.1016/S0022-2836(02)00822-7.Google Scholar
  163. 163.
    Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, et al. The genome of Heliobacterium modesticaldum, a phototrophic representative of the firmicutes containing the simplest photosynthetic apparatus. J Bacteriol. 2008;190(13):4687–96.Google Scholar
  164. 164.
    Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, et al. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science. 2007;317(5837):523–6.ADSGoogle Scholar
  165. 165.
    Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA. Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol. 2012;14(1):177–90.Google Scholar
  166. 166.
    Baymann F, Brugna M, Mühlenhoff U, Nitschke W. Daddy, where did (PS)I come from? Biochim Biophys Acta Bioenerg. 2001;1507(1–3):291–310. doi: 10.1016/S0005-2728(01)00209-2.Google Scholar
  167. 167.
    Blankenship RE. Molecular mechanisms of photosynthesis. Oxford: Blakwell Science; 2002.Google Scholar
  168. 168.
    Heathcote P, Fyfe PK, Jones MR. Reaction centres: the structure and evolution of biological solar power. [Review]. Trends Biochem Sci. 2002;27(2):79–87.Google Scholar
  169. 169.
    Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. In: Merchant SS, Briggs WR, Ort D, editors. Annual review of plant biology, vol. 62. Palo Alto, CA: Annual Reviews; 2011. p. 515–48.Google Scholar
  170. 170.
    Nelson N. Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta Bioenerg. 2011;1807(8):856–63. doi: 10.1016/j.bbabio.2010.10.011.Google Scholar
  171. 171.
    Nitschke W, Rutherford AW. Photosynthetic reaction centers - variations on a common structural theme. Trends Biochem Sci. 1991;16(7):241–5.Google Scholar
  172. 172.
    Sadekar S, Raymond J, Blankenship RE. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol. 2006;23(11):2001–7.Google Scholar
  173. 173.
    Schubert W-D, Klukas O, Saenger W, Witt HT, Fromme P, Krauß N. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol. 1998;280(2):297–314. doi: 10.1006/jmbi.1998.1824.Google Scholar
  174. 174.
    Goodsell DS, Olson AJ. Structural symmetry and protein function. Annu Rev Biophys Biomol Struct. 2000;29(1):105–53.Google Scholar
  175. 175.
    Beddard GS, Porter G. Concentration quenching in chlorophyll. Nature. 1976;260(5549):366–7. doi: 10.1038/260366a0.ADSGoogle Scholar
  176. 176.
    Hosoya-Matsuda N, Inoue K, Hisabori T. Roles of thioredoxins in the obligate anaerobic green sulfur photosynthetic bacterium chlorobaculum tepidum. Mol Plant. 2009;2(2):336–43.Google Scholar
  177. 177.
    Romberger SP, Golbeck JH. The bound iron-sulfur clusters of Type-I homodimeric reaction centers. [Review]. Photosynth Res. 2010;104(2–3):333–46.Google Scholar
  178. 178.
    Romberger SP, Golbeck JH. The F-X iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. Photosynth Res. 2012;111(3):285–90.Google Scholar
  179. 179.
    Rutherford AW, Faller P. Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):245–53.Google Scholar
  180. 180.
    Rutherford AW, Osyczka A, Rappaport F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O-2. FEBS Lett. 2012;586(5):603–16.Google Scholar
  181. 181.
    Khorobrykh AA, Terentyev VV, Zharmukhamedov SK, Klimov VV. Redox interaction of Mn–bicarbonate complexes with reaction centres of purple bacteria. Phil Trans Roy Soc B Biol Sci. 2008;363(1494):1245–51.Google Scholar
  182. 182.
    Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, et al. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science. 2008;321(5891):967–70.ADSGoogle Scholar
  183. 183.
    Griffin BM, Schott J, Schink B. Nitrite, an electron donor for anoxygenic photosynthesis. Science. 2007;316(5833):1870.ADSGoogle Scholar
  184. 184.
    Allen JF, Martin W. Evolutionary biology: out of thin air. Nature. 2007;445(7128):610–2. doi: 10.1038/445610a.Google Scholar
  185. 185.
    Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333(6047):1296–300.ADSGoogle Scholar
  186. 186.
    Blankenship RE. Early evolution of photosynthesis. Plant Physiol. 2010;154(2):434–8.Google Scholar
  187. 187.
    Bryant DA, Frigaard N-U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006;14(11):488–96. doi: 10.1016/j.tim.2006.09.001.Google Scholar
  188. 188.
    Mix L, Haig D, Cavanaugh C. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. J Mol Evol. 2005;60(2):153–63.Google Scholar
  189. 189.
    Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE. Whole-genome analysis of photosynthetic prokaryotes. Science. 2002;298(5598):1616–20.ADSGoogle Scholar
  190. 190.
    Theobald DL. A formal test of the theory of universal common ancestry. Nature. 2010;465(7295):219–22. doi: 10.1038/nature09014.ADSGoogle Scholar
  191. 191.
    Woese C. The universal ancestor. Proc Natl Acad Sci U S A. 1998;95(12):6854–9.ADSGoogle Scholar
  192. 192.
    Abby SS, Tannier E, Gouy M, Daubin V. Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci. 2012;109(13):4962–7.ADSGoogle Scholar
  193. 193.
    Battistuzzi F, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. 2004;4(1):44.Google Scholar
  194. 194.
    Battistuzzi FU, Hedges SB. A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol. 2009;26(2):335–43.Google Scholar
  195. 195.
    Battistuzzi FU, Hedges SB. Eubacteria. In: Hedges SB, Kumar S, editors. The timetree of life. New York, NY: Oxford University Press; 2009. p. 106–15.Google Scholar
  196. 196.
    Boussau B, Gouy M. What genomes have to say about the evolution of the Earth. Gondwana Res. 2012;21(2–3):483–94. doi: 10.1016/ Scholar
  197. 197.
    Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311(5765):1283–7.ADSGoogle Scholar
  198. 198.
    Gaucher EA, Kratzer JT, Randall RN. Deep phylogeny—how a tree can help characterize early life on earth. Cold Spring Harb Perspect Biol. 2010;2(1):a002238.Google Scholar
  199. 199.
    Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276(5313):734–40.Google Scholar
  200. 200.
    Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature. 2009;462(7276):1056–60. doi: 10.1038/nature08656.ADSGoogle Scholar
  201. 201.
    Raymond J, Zhaxybayeva O, Gogarten JP, Blankenship RE. Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Phil Trans Roy Soc Lond Ser B Biol Sci. 2003;358(1429):223–30.Google Scholar
  202. 202.
    Hartman H. Photosynthesis and the origin of life. Orig Life Evol Biosph. 1998;28(4–6):515–21.ADSGoogle Scholar
  203. 203.
    Sleep NH. The Hadean-Archaean environment. Cold Spring Harb Perspect Biol. 2010;2(6):a002527.Google Scholar
  204. 204.
    Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.Google Scholar
  205. 205.
    Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409(6823):1092–101.ADSGoogle Scholar
  206. 206.
    Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the thermotogales. Proc Natl Acad Sci. 2009;106(14):5865–70.ADSGoogle Scholar
  207. 207.
    McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH. High frequency of horizontal gene transfer in the oceans. Science. 2010;330(6000):50.ADSGoogle Scholar
  208. 208.
    Gupta R. Evolutionary relationships among photosynthetic bacteria. Photosynth Res. 2003;76(1–3):173–83.Google Scholar
  209. 209.
    Blank CE, Sánchez-Baracaldo P. Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology. 2010;8(1):1–23.Google Scholar
  210. 210.
    Moeller R, Reitz G, Nicholson WL, Horneck G, Team P. Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. Astrobiology. 2012;12(5):457–68.ADSGoogle Scholar
  211. 211.
    Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kuhl M, et al. ‘Candidatus Thermochlorobacter aerophilum’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. 2012;6(10):1869–82.Google Scholar
  212. 212.
    Edwards KJ, Becker K, Colwell F. The deep, dark energy biosphere: intraterrestrial life on earth. In: Jeanloz R, editor. Annual review of earth and planetary sciences, vol. 40. Palo Alto, CA: Annual Reviews; 2012. p. 551–68.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations