Advertisement

A Global View of the Proteome Perturbations by Hsp90 Inhibitors

  • Pablo C. Echeverria
  • Didier Picard
Chapter
Part of the Interactomics and Systems Biology book series (INTERACTOM, volume 1)

Abstract

Heat shock protein 90 (Hsp90) is a highly efficient molecular chaperone and a major hub in the protein network that maintains cellular homeostasis and function. The qualitative and quantitative changes and rewiring of this protein network in tumor cells make them vastly dependent on Hsp90, which therefore becomes a key target to fight cancer. The inhibition of Hsp90 creates a profound transformation in the cell proteome. In this chapter, we review and analyze the most recent efforts that take advantage of the druggability of Hsp90 in order to understand the global changes at the proteome level that this inhibition produces. The considerable impact that the targeting of Hsp90 has on the structure of these protein networks is also discussed.

Keywords

Hsp90 Hsp90 inhibition Quantitative proteomics Protein networks Network topology Protein-protein interactions Proteostasis 

Notes

Acknowledgments

The authors would like to thank Manfredo Quadroni (University of Lausanne, Lausanne, Switzerland) for providing the common quantitative proteomic data for all the datasets analyzed in this chapter, and Tai Wang (University of Geneva, Picard Lab) for helping in the preparation of Figs. 6.1 and 6.2.

References

  1. 1.
    Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci U S A 78:1067–1071PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372PubMedCrossRefGoogle Scholar
  3. 3.
    Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6:e26044PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Jakob U, Lilie H, Meyer I, Buchner J (1995) Transient interaction of hsp90 with early unfolding intermediates of citrate synthase - implications for heat shock in vivo. J Biol Chem 270:7288–7294PubMedCrossRefGoogle Scholar
  5. 5.
    Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930PubMedCentralPubMedGoogle Scholar
  7. 7.
    Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18:591–605PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sorger PK, Pelham HR (1987) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344PubMedCrossRefGoogle Scholar
  9. 9.
    Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312PubMedCrossRefGoogle Scholar
  10. 10.
    Richter K, Muschler P, Hainzl O, Buchner J (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276:33689–33696PubMedCrossRefGoogle Scholar
  11. 11.
    Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293PubMedCrossRefGoogle Scholar
  12. 12.
    Massey AJ (2010) ATPases as drug targets: insights from heat shock proteins 70 and 90. J Med Chem 53:7280–7286PubMedCrossRefGoogle Scholar
  13. 13.
    Wang T, Echeverria PC, Picard D (2013) Overview of molecular chaperones in health and disease. Inhibitors of molecular chaperones as therapeutic agents; Machajewski TD, Gao Z, Eds.; RSC Publishing: CambridgeGoogle Scholar
  14. 14.
    McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3:E51–E53PubMedCrossRefGoogle Scholar
  15. 15.
    Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105PubMedCrossRefGoogle Scholar
  16. 16.
    Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35:572–578PubMedCrossRefGoogle Scholar
  17. 17.
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801PubMedCrossRefGoogle Scholar
  19. 19.
    Yeyati PL, Bancewicz RM, Maule J, van Heyningen V (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 3:e43PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sawarkar R, Sievers C, Paro R (2012) Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149:807–818PubMedCrossRefGoogle Scholar
  21. 21.
    Bishop SC, Burlison JA, Blagg BS (2007) Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets 7:369–388PubMedCrossRefGoogle Scholar
  22. 22.
    Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300:847–852PubMedCrossRefGoogle Scholar
  23. 23.
    Kunisawa J, Shastri N (2006) Hsp90α chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24:523–534PubMedCrossRefGoogle Scholar
  24. 24.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  25. 25.
    Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    da Silva VC, Ramos CH (2012) The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: a target for cancer therapeutics. J Proteomics 75:2790–2802PubMedCrossRefGoogle Scholar
  28. 28.
    Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528PubMedCrossRefGoogle Scholar
  29. 29.
    Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133PubMedCrossRefGoogle Scholar
  30. 30.
    Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480PubMedCrossRefGoogle Scholar
  31. 31.
    Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman JO, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, Aherne W, Banerji U, Judson I, Sharp S, Powers M, deBilly E, Salmons J, Walton M, Burlingame A, Waterfield M, Workman P (2007) Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 67:3239–3253PubMedCrossRefGoogle Scholar
  32. 32.
    Yao JQ, Liu QH, Chen X, Yang Q, Xu ZY, Hu F, Wang L, Li JM (2010) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells. J Biomed Sci 17:30PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS (2007) Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7:2603–2616PubMedCrossRefGoogle Scholar
  34. 34.
    Song D, Chaerkady R, Tan AC, Garcia-Garcia E, Nalli A, Suarez-Gauthier A, Lopez-Rios F, Zhang XF, Solomon A, Tong J, Read M, Fritz C, Jimeno A, Pandey A, Hidalgo M (2008) Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther 7:3275–3284PubMedCrossRefGoogle Scholar
  35. 35.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  36. 36.
    Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, de Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes Dagama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Haupt A, Joberty G, Bantscheff M, Frohlich H, Stehr H, Schweiger MR, Fischer A, Kerick M, Boerno ST, Dahl A, Lappe M, Lehrach H, Gonzalez C, Drewes G, Lange BM (2012) Hsp90 inhibition differentially destabilises MAP kinase and TGF-β signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer 12:38PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU (2012) Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics 11:M111.014654Google Scholar
  40. 40.
    Wu Z, Moghaddas Gholami A, Kuster B (2012) Systematic identification of the Hsp90 candidate regulated proteome. Mol Cell Proteomics 11:M111.016675Google Scholar
  41. 41.
    Fierro-Monti I, Echeverria P, Racle J, Hernandez C, Picard D, Quadroni M (2013) Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy. PLoS ONE 8:e80425Google Scholar
  42. 42.
    Fierro-Monti I, Racle J, Hernandez C, Waridel P, Hatzimanikatis V, Quadroni M (2013) A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor. PLoS ONE 8:e80423Google Scholar
  43. 43.
    Jez JM, Chen JC, Rastelli G, Stroud RM, Santi DV (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10:361–368PubMedCrossRefGoogle Scholar
  44. 44.
    Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A, Arkenau HT, Moreno-Farre J, Banerji U, Roels B, Peachey H, Aherne W, de Bono JS, Raynaud F, Workman P, Judson I (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 17:1561–1570PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Page TJ, Sikder D, Yang L, Pluta L, Wolfinger RD, Kodadek T, Thomas RS (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst 2:627–639PubMedCrossRefGoogle Scholar
  46. 46.
    Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Stumpflen V, Mewes HW (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36:D646–D650PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wright TM, Brannon AR, Gordan JD, Mikels AJ, Mitchell C, Chen S, Espinosa I, van de Rijn M, Pruthi R, Wallen E, Edwards L, Nusse R, Rathmell WK (2009) Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene 28:2513–2523PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, Oneyama C, Okada M, Takumi T, Nishita M, Minami Y (2009) Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 28:3197–3208PubMedCrossRefGoogle Scholar
  50. 50.
    Luque A, Carpizo DR, Iruela-Arispe ML (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278:23656–23665PubMedCrossRefGoogle Scholar
  51. 51.
    Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, Amariglio N, Henriksson R, Rechavi G, Hedman H, Wides R, Yarden Y (2004) LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23:3270–3281PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL 3rd, Sweeney C (2004) The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 279:47050–47056PubMedCrossRefGoogle Scholar
  53. 53.
    Segatto O, Anastasi S, Alema S (2011) Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J Cell Sci 124:1785–1793PubMedCrossRefGoogle Scholar
  54. 54.
    Kao YR, Shih JY, Wen WC, Ko YP, Chen BM, Chan YL, Chu YW, Yang PC, Wu CW, Roffler SR (2003) Tumor-associated antigen L6 and the invasion of human lung cancer cells. Clin Cancer Res 9:2807–2816PubMedGoogle Scholar
  55. 55.
    Nagao Y, French BA, Cai Y, French SW, Wan YJ (1998) Inhibition of PPAR alpha/RXR alpha-mediated direct hyperplasia pathways during griseofulvin-induced hepatocarcinogenesis. J Cell Biochem 69:189–200PubMedCrossRefGoogle Scholar
  56. 56.
    Li MY, Yuan H, Ma LT, Kong AW, Hsin MK, Yip JH, Underwood MJ, Chen GG (2010) Roles of peroxisome proliferator-activated receptor-alpha and -gamma in the development of non-small cell lung cancer. Am J Respir Cell Mol Biol 43:674–683PubMedCrossRefGoogle Scholar
  57. 57.
    Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, Kumaraswamy S, Balasis M, Greedy B, Armitage ES, Lawrence N, Bhalla K (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544PubMedCrossRefGoogle Scholar
  58. 58.
    Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124PubMedCrossRefGoogle Scholar
  59. 59.
    Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:246–250PubMedCentralPubMedGoogle Scholar
  60. 60.
    Schwanhausser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209PubMedCrossRefGoogle Scholar
  61. 61.
    Duerfeldt AS, Blagg BS (2010) Hsp90 inhibition: elimination of shock and stress. Bioorg Med Chem Lett 20:4983–4987PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Cell BiologyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations