Skip to main content

V.B.3. The Future of Vitrectomy

  • Chapter
  • First Online:
Book cover Vitreous

Abstract

Entering into its fifth decade, vitrectomy continues to be an effective and safe solution for a myriad of vitreoretinal diseases. As knowledge about vitreous and the vitreoretinal interface continues to expand, vitrectomy technology and techniques have responsively evolved. The most recent innovations have included refinements of vitreous cutter and aspiration systems, improvements in illumination source and light delivery devices, and enhancements to intraoperative visualization systems. More excitingly, there are several emerging developments on the horizon, including the integration of augmented reality technology, robotic vitreoretinal surgery, gene and stem cell-based therapies, retinal prostheses, and novel drug delivery methods. This fantastic process of evolution continues to improve the safety and efficacy of vitrectomy, as well as expand its indications. As surgical outcomes continue to improve and complications are mitigated, new indications for vitrectomy have developed. Minimal vitrectomy that involves removal of floaters or early preretinal membranes along with the posterior vitreous cortex and sparing the anterior vitreous may become the standard of care for certain indications, thereby reducing post-vitrectomy cataract development [see chapter V.B.8. Floaters and vision – current concepts and management paradigms]. With advanced imaging, such as spectral-domain OCT, we have identified new pathologies like vitreo-macular adhesion, which has been shown to play a role in diabetic retinopathy (DR) and exudative AMD. “Preventive surgery” for AMD and DR may become acceptable to arrest disease process early on. Such preemptive surgery may help to reduce blinding complications in their advanced stages. Application of pharmacologic vitreolysis before pars plana vitrectomy will encourage even more liberal use of vitrectomy for such “new indications” [see chapter VI.A. Pharmacologic vitreolysis].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machemer R, Buettner H, Norton EW, Parel JM. Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(4):813–20.

    PubMed  CAS  Google Scholar 

  2. Recchia FM, Scott IU, Brown GC, Brown MM, Ho AC, Ip MS. Small-gauge pars plana vitrectomy: a report by the American Academy of Ophthalmology. Ophthalmology. 2010;117(9):1851–7. Elsevier Inc.

    Article  PubMed  Google Scholar 

  3. Oshima Y, Wakabayashi T, Sato T, Ohji M, Tano Y. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology. 2010;117(1):93–102. Elsevier Inc.

    Article  PubMed  Google Scholar 

  4. Hubschman J-P, Bourges J-L, Tsui I, Reddy S, Yu F, Schwartz SD. Effect of cutting phases on flow rate in 20-, 23-, and 25-gauge vitreous cutters. Retina. 2009;29(9):1289–93.

    Article  PubMed  Google Scholar 

  5. Binder S, Wimpissinger B, Kellner L. Current clinical data and future (for small-gauge vitreoretinal surgery). In: Rizzo S, Patelli F, Chow DR, editors. Vitreo-retinal surgery. Berlin/Heidelberg: Springer; 2009. p. 213–22.

    Chapter  Google Scholar 

  6. Magalhães O, Maia M, Maia A, Penha F, Dib E, Farah ME, et al. Fluid dynamics in three 25-gauge vitrectomy systems: principles for use in vitreoretinal surgery. Acta Ophthalmol. 2008;86(2):156–9.

    Article  PubMed  Google Scholar 

  7. Magalhães O, Maia M, Rodrigues EB, Machado L, Costa EF, Maia A, et al. Perspective on fluid and solid dynamics in different pars plana vitrectomy systems. Am J Ophthalmol. 2011;151(3):401–5.e1. Elsevier Inc.

    Article  PubMed  Google Scholar 

  8. Steel DHW, Charles S. Vitrectomy fluidics. Ophthalmologica. 2011;226 Suppl 1:27–35.

    Article  PubMed  Google Scholar 

  9. DeBoer C, Fang S, Lima LH, McCormick M, Bhadri P, Kerns R, et al. Port geometry and its influence on vitrectomy. Retina. 2008;28(8):1061–7.

    Article  PubMed  Google Scholar 

  10. Barnes AC, Deboer CM, Bhadri PR, Magalhaes Jr O, Kerns RM, Mccormick MT, et al. 25-gauge instrumentation: engineering challenges and tradeoffs. In: Rizzo S, Patelli F, Chow DR, editors. Vitreo-retinal surgery. Berlin/Heidelberg: Springer; 2009. p. 9–29.

    Chapter  Google Scholar 

  11. Chen C-J, Satofuka S, Inoue M, Ishida S, Shinoda K, Tsubota K. Suprachoroidal hemorrhage caused by breakage of a 25-gauge cannula. Ophthalmic Surg Lasers Imaging. 2008;39(4):323–4.

    Article  PubMed  Google Scholar 

  12. Charles S. An engineering approach to vitreoretinal surgery. Retina. 2004;24(3):435–44.

    Article  PubMed  Google Scholar 

  13. Tolentino FI, Freeman HM. A new lens for closed pars plana vitrectomy. Arch Ophthalmol. 1979;97(11):2197–8.

    Article  PubMed  CAS  Google Scholar 

  14. Chalam KV, Shah VA. Optics of wide-angle panoramic viewing system-assisted vitreous surgery. Surv Ophthalmol. 2004;49(4):437–45.

    Article  PubMed  Google Scholar 

  15. Spitznas M. A binocular indirect ophthalmomicroscope (BIOM) for non-contact wide-angle vitreous surgery. Graefes Arch Clin Exp Ophthalmol. 1987;225(1):13–5.

    Article  PubMed  CAS  Google Scholar 

  16. Oshima Y, Chow DR, Awh CC, Sakaguchi H, Tano Y. Novel mercury vapor illuminator combined with a 27/29-gauge chandelier light fiber for vitreous surgery. Retina. 2008;28(1):171–3.

    Article  PubMed  Google Scholar 

  17. Ohji M, Huang S, Kaiser P, Tornambe P, Gotzaridis S. Pearls from experts. In: Rizzo S, Patelli F, Chow DR, editors. Vitreo-retinal surgery. Berlin/Heidelberg: Springer; 2009. p. 223–30.

    Chapter  Google Scholar 

  18. Mathias M, Ernst BJ, Pichi F, Torrazza C, Ciardella A, Oliver SCN. Thermal deformation of chandelier endoillumination probes exposed to uveal tissue and blood. Retina. 2012;32(4):773–5.

    Article  PubMed  Google Scholar 

  19. Synergetics. Illuminated infusion chandeliers [Internet]. Available from: http://synergeticsusa.com/products/standard/illumination.

  20. Chalam KV, Shah GY, Agarwal S, Gupta SK. Illuminated curved 25-gauge vitrectomy probe for removal of subsclerotomy vitreous in vitreoretinal surgery. Indian J Ophthalmol. 2008;56(4):331–4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oliveira TB, Trevelin LC, Moreira FMA, Bagnato VS, Schor P, de Carvalho LAV. Development and preliminary results of a chromatic illumination system for indirect ophthalmoscopes. Arq Bras Oftalmol. 2009;72(2):146–51.

    Article  PubMed  Google Scholar 

  22. Ortiz RG, Lopez PF, Lambert HM, Sternberg P, Aaberg TM. Examination of macular vitreoretinal interface disorders with monochromatic photography. Am J Ophthalmol. 1992;113(3):243–7.

    Article  PubMed  CAS  Google Scholar 

  23. Elsner AE, Burns SA, Weiter JJ, Delori FC. Infrared imaging of sub-retinal structures in the human ocular fundus. Vision Res. 1996;36(1):191–205.

    Article  PubMed  CAS  Google Scholar 

  24. Stellaris PC. Brochure – Bausch + Lomb [Internet]. Available from: www.bausch.com/en/…/Stellaris-PC-ECP-Brochure.ashx.

  25. Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, et al. Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc. 2010;24(8):1976–85.

    Article  PubMed  Google Scholar 

  26. Nakamoto M, Ukimura O, Faber K, Gill IS. Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol. 2012;22(2):121–6.

    Article  PubMed  Google Scholar 

  27. Chu MWA, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.

    Article  Google Scholar 

  28. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. 2011;20(3):189–201. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  29. Greenberg K. Vantage Surgical Systems Joins Total Immersion’s North America Partner Network, Seeks to Deploy Augmented Reality in Live Surgery [Internet]. Reuters. 2010 [cited 4 Apr 2013]. Available from: http://www.reuters.com/article/2010/11/30/idUS106815+30-Nov-2010+BW20101130.

  30. Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011;52(6):3153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rohlfing T, Denzler J, Grässl C, Russakoff DB, Maurer CR. Markerless real-time 3-D target region tracking by motion backprojection from projection images. IEEE Trans Med Imaging. 2005;24(11):1455–68.

    Article  PubMed  Google Scholar 

  32. Rush R, Sheth S, Surka S, Ho I, Gregory-Roberts J. Postoperative perfluoro-N-octane tamponade for primary retinal detachment repair. Retina. 2012;32(6):1114–20.

    Article  PubMed  CAS  Google Scholar 

  33. Santos RAV, Keegan DJ, Fuchs BS, Song BJ, Avila MP, Simpson N, et al. DFPE, partially fluorinated ether: a novel approach for experimental intravitreal tamponade. Retina. 2013;33(1):120–7.

    Article  PubMed  CAS  Google Scholar 

  34. Romano MR, Zenoni S, Arpa P, Mariotti C. Mixture of ether and silicone oil for the treatment of inferior complicated retinal detachment. Eur J Immunol. 2013;43(3):230–5.

    Google Scholar 

  35. Kralinger MT, Stolba U, Velikay M, Egger S, Binder S, Wedrich A, et al. Safety and feasibility of a novel intravitreal tamponade using a silicone oil/acetyl-salicylic acid suspension for proliferative vitreoretinopathy: first results of the Austrian Clinical Multicenter Study. Graefes Arch Clin Exp Ophthalmol. 2010;248(8):1193–8.

    Article  PubMed  Google Scholar 

  36. Chen H, Feng S, Liu Y, Huang Z, Sun X, Zhou L, et al. Functional evaluation of a novel vitreous substitute using polyethylene glycol sols injected into a foldable capsular vitreous body. J Biomed Mater Res A. 2013;28:1–10.

    CAS  Google Scholar 

  37. Tao Y, Tong X, Zhang Y, Lai J, Huang Y, Jiang Y-R, et al. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta Biomater. 2013;9(2):5022–30. Acta Materialia Inc.

    Article  PubMed  CAS  Google Scholar 

  38. Schramm C, Spitzer MS, Henke-Fahle S, Steinmetz G, Januschowski K, Heiduschka P, et al. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci. 2012;53(2):613–21.

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto S, Hirata A, Ishikawa S, Ohta K, Nakamura K-I, Okinami S. Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefes Arch Clin Exp Ophthalmol. 2013;3:1109–14.

    Article  Google Scholar 

  40. Holligan DL, Gillies GT, Dailey JP. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 2003;14(6):661–6.

    Article  CAS  Google Scholar 

  41. Farid M, Steinert RF. Femtosecond laser-assisted corneal surgery. Curr Opin Ophthalmol. 2010;21(4):288–92.

    PubMed  Google Scholar 

  42. Abell RG, Kerr NM, Vote BJ. Toward zero effective phacoemulsification time using femtosecond laser pretreatment. Ophthalmology. 2013;25:1–7.

    Google Scholar 

  43. Nakano T, Sugita N, Ueta T, Tamaki Y, Mitsuishi M. A parallel robot to assist vitreoretinal surgery. Int J Comput Assist Radiol Surg. 2009;4(6):517–26.

    Article  PubMed  Google Scholar 

  44. Ueta T, Yamaguchi Y, Shirakawa Y, Nakano T, Ideta R, Noda Y, et al. Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model. Ophthalmology. 2009;116(8):1538–43, 1543.e1–2. American Academy of Ophthalmology.

    Article  PubMed  Google Scholar 

  45. Rahimy E, Wilson J, Tsao T-C, Schwartz S, Hubschman J-P. Robot-assisted intraocular surgery: development of the IRISS and feasibility studies in an animal model. Eye (Lond). 2013;27(8):972–8.

    Article  CAS  Google Scholar 

  46. Gonenc B, Balicki MA, Handa J, Gehlbach P, Riviere CN, Taylor RH, et al. Evaluation of a micro-force sensing handheld robot for vitreoretinal surgery. Rep U S. 2012;2012:4125–30.

    PubMed  PubMed Central  Google Scholar 

  47. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;20:1–5.

    Article  Google Scholar 

  49. Fernandes RAB, Diniz B, Ribeiro R, Humayun M. Artificial vision through neuronal stimulation. Neurosci Lett. 2012;519(2):122–8. Elsevier Ireland Ltd.

    Article  PubMed  CAS  Google Scholar 

  50. Facts about alpha IMS retina implant [Internet]. Available from: http://retina-implant.de/en/default.aspx.

  51. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–617.

    Article  PubMed  CAS  Google Scholar 

  52. El Sanharawi M, Kowalczuk L, Touchard E, Omri S, de Kozak Y, Behar-Cohen F. Protein delivery for retinal diseases: from basic considerations to clinical applications. Prog Retin Eye Res. 2010;29(6):443–65. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  53. González-Alvarez M, González-Alvarez I, Bermejo M. Hydrogels: an interesting strategy for smart drug delivery. Ther Deliv. 2013;4(2):157–60.

    Article  PubMed  Google Scholar 

  54. Yasukawa T, Tabata Y, Kimura H, Ogura Y. Recent advances in intraocular drug delivery systems. Recent Pat Drug Deliv Formul. 2011;5(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  55. Bergeles C, Kummer MP, Kratochvil BE, Framme C, Nelson BJ. Steerable intravitreal inserts for drug delivery: in vitro and ex vivo mobility experiments. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):33–40.

    PubMed  Google Scholar 

  56. Conway BR. Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul. 2008;2(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  57. Kuno N, Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging. 2010;27(2):117–34.

    Article  PubMed  CAS  Google Scholar 

  58. Jo DH, Kim JH, Lee TG, Kim JH. Nanoparticles in the treatment of angiogenesis-related blindness. J Ocul Pharmacol Ther. 2013;29(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  59. Del Pozo-Rodríguez A, Delgado D, Gascón AR, Solinís MÁ. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther. 2013;29(3):173–88.

    Article  PubMed  Google Scholar 

  60. Kushwaha SK, Saxena P, Rai A. Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int J Pharm Investig. 2012;2(2):54–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Lam BL, Feuer WJ, Abukhalil F, Porciatti V, Hauswirth WW, Guy J. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch Ophthalmol. 2010;128(9):1129–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Wert KJ, Davis RJ, Sancho-Pelluz J, Nishina PM, Tsang SH. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet. 2013;22(3):558–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Biotech A. The Avalanche approach: how it works [Internet]. Avalanchebiotech. 2012 [cited 4 Apr 2013]. Available from: http://www.avalanchebiotech.com/how-it-works.php.

  65. Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis. 2012;18(February):2479–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Fujii Y, Kachi S, Ito A, Kawasumi T, Honda H, Terasaki H. Transfer of gene to human retinal pigment epithelial cells using magnetite cationic liposomes. Br J Ophthalmol. 2010;94(8):1074–7.

    Article  PubMed  Google Scholar 

  67. Lavinsky D, Chalberg TW, Mandel Y, Huie P, Dalal R, Marmor M, et al. Modulation of transgene expression in retinal gene therapy by selective laser treatment. Invest Ophthalmol Vis Sci. 2013;54(3):1873–80.

    Article  PubMed  CAS  Google Scholar 

  68. Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):763–78.

    Article  PubMed  Google Scholar 

  69. Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. Elsevier Ltd.

    Article  PubMed  CAS  Google Scholar 

  70. Stanzel BV, Liu Z, Brinken R, Braun N, Holz FG, Eter N. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci. 2012;53(1):490–500.

    Article  PubMed  CAS  Google Scholar 

  71. Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Hubschman MD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video V.B.3.1

(MP4 131278 kb)

Video V.B.3.2

(MP4 131278 kb)

Video V.B.3.3

(MP4 131278 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hubschman, JP., Shah, S.U., Voleti, V.B. (2014). V.B.3. The Future of Vitrectomy. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_40

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics