Neuroinflammation in Alzheimer’s Disease

  • Veronika M. Reinisch
  • Daniela L. Krause
  • Norbert Müller


The neuropathology of Alzheimer’s disease (AD) is still only partly understood. Beyond doubt neuroinflammation plays a key role in pathophysiology of the disease. Still it has not been fully understood when and how inflammation arises in the course of AD. Whether inflammation is an underlying cause or a resulting condition in AD remains unresolved. Mounting evidence indicates that microglia activation contributes to neuronal damage in neurodegenerative diseases. However, also beneficial aspects of microglia activation have been identified. The purpose of this review is to highlight new insights into the detrimental and beneficial role of neuroinflammation in AD. In regard to this, we discuss the limitations and the advantages of anti-inflammatory treatment options and identify what future implications might result from this underlying neuroinflammation for AD therapy. Here we put a special focus on the therapy with COX-1 and COX-2 Inhibitors as well as anti-Aß antibodies.


Inflammation Alzheimer Microglia COX-inhibitors Abeta DNA vaccination 


  1. 1.
    Sperling RA, Aisen PS, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg PB et al. Cognition and amyloid load in Alzheimer disease imaged with Florbetapir F 18(AV-45) positron emission tomography. Am J Geriatr Psychiatry. 2013;21(3):272–8.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Panza F et al. Immunotherapy for Alzheimer’s disease: from anti-beta-amyloid to tau-based immunization strategies. Immunotherapy. 2012;4(2):213–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Teunissen CE et al. [Serum markers in relation to cognitive functioning in an aging population: results of the Maastricht Aging Study (MAAS)]. Tijdschr Gerontol Geriatr. 2003;34(1):6–12.PubMedGoogle Scholar
  5. 5.
    McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19(1):355–61.PubMedGoogle Scholar
  6. 6.
    Akiyama H et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    in t’ Veld BA, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345(21):1515–21.Google Scholar
  8. 8.
    Szekely CA et al. NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology. 2008;70(1):17–24.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Anthony JC et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology. 2000;54(11):2066–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Reines SA et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology. 2004;62(1):66–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Dl K. Muller N, MN. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int. J Alzheimers Dis. 2010;14(732806):732806. 10.4061/2010/732806 [doi] 732806 [pii].Google Scholar
  12. 12.
    Kipnis J et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A. 2004;101(21):8180–5.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ziv Y et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Teunissen CE et al. Inflammation markers in relation to cognition in a healthy aging population. J Neuroimmunol. 2003;134(1–2):142–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15.PubMedGoogle Scholar
  16. 16.
    Edison P et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers J, Shen Y. A perspective on inflammation in Alzheimer’s disease. Ann N Y Acad Sci. 2000;924:132–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4(2):103–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Lue LF et al. Inflammation, a beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol. 1996;55(10):1083–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Mulugeta E et al. Inflammatory mediators in the frontal lobe of patients with mixed and vascular dementia. Dement Geriatr Cogn Disord. 2008;25(3):278–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Stubner S et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett. 1999;259(3):145–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang XQ et al. Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci Lett. 2009;450(2):122–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Webster S et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging. 1997;18(4):415–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Cras P et al. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am J Pathol. 1990;137(2):241–6.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Styren SD, Civin WH, Rogers J. Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain. Exp Neurol. 1990;110(1):93–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Perlmutter LS, Barron E, Chui HC. Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett. 1990;119(1):32–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Lue LF et al. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia. 2001;35(1):72–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Persson M et al. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia. 2005;51(2):111–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Francis PT. Altered glutamate neurotransmission and behaviour in dementia: evidence from studies of memantine. Curr Mol Pharmacol. 2009;2(1):77–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81(3):302–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Majumdar A et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007;18(4):1490–6.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005;25(36):8240–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Fan R et al. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci. 2007;27(12):3057–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Seabrook TJ et al. Minocycline affects microglia activation, A beta deposition, and behavior in APP-tg mice. Glia. 2006;53(7):776–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Chaves C et al. Glutamate-N-methyl-D-aspartate receptor modulation and minocycline for the treatment of patients with schizophrenia: an update. Braz J Med Biol Res. 2009;42(11):1002–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Wyss-Coray T et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Vehmas AK et al. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging. 2003;24(2):321–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Remarque EJ et al. Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol. 2001;36(1):171–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Innamorato NG, Lastres-Becker I, Cuadrado A. Role of microglial redox balance in modulation of neuroinflammation. Curr Opin Neurol. 2009;22(3):308–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Espey MG et al. Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport. 1997;8(2):431–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Giulian D et al. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int. 1995;27(1):119–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Leipnitz G et al. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int. 2007;50(1):83–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas SR, Witting PK, Stocker R. 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for alpha-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem. 1996;271(51):32714–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Schwarz MJ, Guillemin GJ, et al. Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci. 2012;29:29.Google Scholar
  47. 47.
    Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271(52):33157–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Aisen PS, Davis KL. The search for disease-modifying treatment for Alzheimer’s disease. Neurology. 1997;48(5 Suppl 6):S35–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Hirst WD et al. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol Cell Neurosci. 1999;13(1):57–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Hauss-Wegrzyniak B, Vraniak P, Wenk GL. The effects of a novel NSAID on chronic neuroinflammation are age dependent. Neurobiol Aging. 1999;20(3):305–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Planas AM et al. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett. 1995;200(3):187–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Tocco G et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol. 1997;144(2):339–49.PubMedCrossRefGoogle Scholar
  53. 53.
    Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience. 1998;87(2):319–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsuoka Y et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol. 2001;158(4):1345–54.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hewett SJ et al. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther. 2000;293(2):417–25.PubMedGoogle Scholar
  56. 56.
    Willard LB et al. The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenase-2 inhibition. Exp Brain Res. 2000;134(1):58–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001;13(3):569–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Araki E et al. Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke. 2001;32(10):2370–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Yasojima K et al. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 1999;830(2):226–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Ho L et al. Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol. 2001;58(3):487–92.PubMedGoogle Scholar
  61. 61.
    Lukiw WJ, Bazan NG. Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J Neurosci Res. 1997;50(6):937–45.PubMedCrossRefGoogle Scholar
  62. 62.
    Chang JW, Coleman PD, O‘Banion MK. Prostaglandin G/H synthase-2 (cyclooxygenase-2) mRNA expression is decreased in Alzheimer’s disease. Neurobiol Aging. 1996;17(5):801–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Choi SH et al. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem. 2013;124(1):59–68.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Coma M, Sereno L, et al. Triflusal reduces dense-core plaque load, associated axonal alterations and inflammatory changes, and rescues cognition in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2010;38(3):482–91.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Montine TJ et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology. 1999;53(7):1495–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee RK, Knapp S, Wurtman RJ. Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci. 1999;19(3):940–7.PubMedGoogle Scholar
  67. 67.
    Blom MA et al. NSAIDS inhibit the IL-1 beta-induced IL-6 release from human post-mortem astrocytes: the involvement of prostaglandin E2. Brain Res. 1997;777(1–2):210–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Fiebich BL et al. Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J Neurochem. 1997;68(2):704–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Kelley KA et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol. 1999;155(3):995–1004.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions. J Neurosci Res. 1998;54(1):1–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Lehmann JM et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1997;272(6):3406–10.PubMedCrossRefGoogle Scholar
  73. 73.
    Ricote M et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391(6662):79–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Combs CK et al. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci. 1999;19(3):928–39.PubMedGoogle Scholar
  75. 75.
    Combs CK et al. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000;20(2):558–67.PubMedGoogle Scholar
  76. 76.
    Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155–67.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Smith MA et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19(1):363–72.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Schipper HM et al. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem. 2009;110(2):469–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Alcaraz MJ, Fernandez P, Guillen MI. Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des. 2003;9(30):2541–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des. 2008;14(5):429–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Kimura K. Mechanisms of active oxygen species reduction by non-steroidal anti-inflammatory drugs. Int J Biochem Cell Biol. 1997;29(3):437–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Nivsarkar M, Banerjee A, Padh H. Cyclooxygenase inhibitors: a novel direction for Alzheimer’s management. Pharmacol Rep. 2008;60(5):692–8.PubMedGoogle Scholar
  83. 83.
    Guardia-Laguarta C, Pera M, Lleo A. A gamma-Secretase as a therapeutic target in Alzheimer‘s disease. Curr Drug Targets. 2010;11(4):506–17.PubMedCrossRefGoogle Scholar
  84. 84.
    Weggen S et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Kukar T et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med. 2005;11(5):545–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Lleo A et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–6.PubMedCrossRefGoogle Scholar
  87. 87.
    McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology. 1996;47(2):425–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Vlad SC et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008;70(19):1672–7.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Breitner JC, Baker LD, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011;7(4):402–11.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Jantzen PT, Connor KE, et al. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci. 2002;22(6):246–54.Google Scholar
  91. 91.
    Martin BK et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008;65(7):896–905.PubMedCrossRefGoogle Scholar
  92. 92.
    Wolfson C et al. A case-control analysis of nonsteroidal anti-inflammatory drugs and Alzheimer’s disease: are they protective? Neuroepidemiology. 2002;21(2):81–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Panza F, Frisardi V, et al. Anti-beta-amyloid immunotherapy for Alzheimer’s disease: focus on bapineuzumab. Curr Alzheimer Res. 2011;8(8):808–17.PubMedCrossRefGoogle Scholar
  94. 94.
    DH C. Abeta DNA vaccination for Alzheimer’s disease: focus on disease prevention. CNS Neurol Disord Drug Targets. 2010;9(2):207–16.CrossRefGoogle Scholar
  95. 95.
    Fleisher AS, Chen K, et al. Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol. 2012;11(12):1057–65.PubMedCrossRefGoogle Scholar
  96. 96.
    Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006;53(5):484–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Yermakova AV, O‘Banion MK. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging. 2001;22(6):823–36.PubMedCrossRefGoogle Scholar
  98. 98.
    Combrinck M et al. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(1):85–8.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002;1(5):279–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Veronika M. Reinisch
    • 1
  • Daniela L. Krause
    • 1
  • Norbert Müller
    • 1
  1. 1.Department of Psychiatry and PsychotherapyLudwig-Maximilians University MunichMunichGermany

Personalised recommendations