The Systemic Right Ventricle in Biventricular and Univentricular Circulation

  • Heiner Latus
  • Christian Apitz
  • Dietmar SchranzEmail author
Part of the Respiratory Medicine book series (RM)


In this chapter we describe the role of the systemic right ventricle in a biventricular circulation and the univentricular heart. The ventriculo-ventricular interaction of the subaortic right ventricle is discussed in the context of (1) congenitally corrected transposition and (2) the systemic ventricle after atrial switch operation; the right ventricle as a univentricular heart based on the experiences of a hypoplastic left heart syndrome. Novel therapeutical strategies are presented in the form of pulmonary artery banding for the failing systemic right ventricle and for the retraining of the subpulmonary left ventricle; in addition, some pharmacological treatment aspects for the failing right ventricle are addressed as well as the strategy of a so-called hybrid approach which combines bilateral pulmonary banding, duct stenting, and atrioseptostomy. Importantly we highlight, what we need to learn in order to expand the therapeutic options for the majority of patients with normal anatomy but a failing subpulmonary ventricle.


Right Ventricle Tricuspid Valve Ventricular Septal Defect Hypoplastic Left Heart Syndrome Pulmonary Artery Banding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 6.1

MRI shows a double outlet right ventricle with transposition of the great arteries and subpulmonary obstruction (MOV 296 kb)

Video 6.2a

Shows in MRI four-chamber view ccTGA with atrio (LA, RA) to ventricular (RV, LV) discordance, respectively. Dominant is the dilated left atrium and systemic right ventricle associated with tricuspid (systemic atrioventricular valve) regurgitation, the interatrial septum is bulging to the right. (AVI 1380 kb)

Video 6.2b, c

Lateral view at the LA-RV-AO before and after pulmonary banding combined with tricuspid valve reconstruction; the surgical strategy improved the function of the systemic RV and reduced significantly the LA enlargement and consecutively the patient’s functional status. (AVI 1402 kb)

(AVI 356 kb)

Video 6.3

Shown is echocardiographic four-chamber view of an infant with hypoplastic left heart syndrome consisting of mitral valve stenosis and aortic valve atresia. The functional single right ventricle has a sufficient systolic function. At the atrial level systemic and pulmonary vein mixed to one inflow through the tricuspid valve in the volume dilated RV. Stenting of the atrial septum became necessary for unloading the left atrium (AVI 10051 kb)


  1. 1.
    Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92 Suppl 1:i27–38.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Schiebler GL, Edwards JE, Burchell HB, Dushane JW, Ongley PA, Wood EH. Congenital corrected transposition of the great vessels: a study of 33 cases. Pediatrics. 1961;27(Suppl): 849–88.PubMedGoogle Scholar
  3. 3.
    De la Cruz MV, Amoedo M, Rivera F, Attie F. Arterioventricular relations and their classification. Two specimens of arterioventricular discordance and review of published reports. Br Heart J. 1974;36(6):539–53.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Anderson RH, Shinebourne EA, Gerlis LM. Criss-cross atrioventricular relationships producing paradoxical atrioventricular concordance or discordance. Their significance to nomenclature of congenital heart disease. Circulation. 1974;50(1):176–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Altamira LA, Redington AN. Right ventricular failure in congenital heart disease. In: Shaddy RE, editor. Heart failure in congenital heart disease. London: Springer; 2011.Google Scholar
  6. 6.
    Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98(10):997–1005.PubMedCrossRefGoogle Scholar
  7. 7.
    van der Bom T, Winter MM, Groenink M, Vliegen HW, Pieper PG, van Dijk AP, Sieswerda GT, Roos-Hesselink JW, Zwinderman AH, Mulder BJ, Bouma BJ. Right ventricular end-diastolic volume combined with peak systolic blood pressure during exercise identifies patients at risk of complications in adults with a systemic right ventricle. J Am Coll Cardiol. 2013;62:926–36. pii: S0735-109.Google Scholar
  8. 8.
    Hauser M, Bengel FM, Hager A, Kuehn A, Nekolla SG, Kaemmerer H, Schwaiger M, Hess J. Impaired myocardial blood flow and coronary flow reserve of the anatomical right systemic ventricle in patients with congenitally corrected transposition of the great arteries. Heart. 2003;89(10):1231–5.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lundstrom U, Bull C, Wyse RK, Somerville J. The natural and “unnatural” history of congenitally corrected transposition. Am J Cardiol. 1990;65(18):1222–9.PubMedCrossRefGoogle Scholar
  10. 10.
    van Son JA, Danielson GK, Huhta JC, Warnes CA, Edwards WD, Schaff HV, Puga FJ, Ilstrup DM. Late results of systemic atrioventricular valve replacement in corrected transposition. J Thorac Cardiovasc Surg. 1995;109(4):642–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Murtuza B, Barron DJ, Stumper O, Stickley J, Eaton D, Jones TJ, Brawn WJ. Anatomic repair for congenitally corrected transposition of the great arteries: a single-institution 19-year experience. Thorac Cardiovasc Surg. 2011;142(6):1348–57.CrossRefGoogle Scholar
  12. 12.
    Myers PO, Del Nido PJ, Geva T, Bautista-Hernandez V, Chen P, Mayer JE Jr, Emani SM. Impact of age and duration of banding on left ventricular preparation before anatomic repair for congenitally corrected transposition of the great arteries. Ann Thorac Surg. 2013;96:603–10. pii: S0003-4975(13)00833-3.Google Scholar
  13. 13.
    Metton O, Gaudin R, Ou P, Geelli S, Mussa S, Sidi D, Vouhe P, Raisky O. Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38:728–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Karl TR. The role of the Fontan operation in the treatment of congenitally corrected transposition of the great arteries. Ann Pediatr Card. 2011;4:103–10.CrossRefGoogle Scholar
  15. 15.
    Karl TR, Weintraub RG, Brizard CP, Cochrane AD, Mee RB. Senning plus arterial switch operation for discordant (congenitally corrected) transposition. Ann Thorac Surg. 1997;64: 495–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Mavroudis C, Backer CL, Kohr LM, Deal BJ, Stinios J, Muster AJ, et al. Bidirectional Glenn shunt in association with congenital heart repairs: the 1 ½ ventricular repair. Ann Thorac Surg. 1999;68:976–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Ismat FA, Baldwin HS, Karl TR, Weinberg PM. Coronary anatomy in congenitally corrected transposition of the great arteries. Int J Cardiol. 2002;86:207–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Moons P, Gewillig M, Sluysmans T, Verhaaren H, Viart P, Massin M, Suys B, Budts W, Pasquet A, De Wolf D, Vliers A. Long-term outcome up to 30 years after the Mustard or Senning operation: a nationwide multicentre study in Belgium. Heart. 2004;90(3):307–13.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Senning A. Surgical correction of transposition of the great vessels. Surgery. 1959;45: 966–80.PubMedGoogle Scholar
  20. 20.
    Mustard WT. Successful two-stage correction of the transposition of the great vessels. Surgery. 1964;55:469–72.PubMedGoogle Scholar
  21. 21.
    Jatene AD, Fontes VF, Paulista PP, de Souza LC, Neger F, Galantier M, Souza JE. Successful anatomic correction of transposition of the great vessels. A preliminary report. Arq Bras Cardiol. 1975;28(4):461–4.PubMedGoogle Scholar
  22. 22.
    Castaneda AR, Trusler GA, Paul MH, et al. The early results of the treatment of simple transposition in the current era. J Thorac Cardiovasc Surg. 1988;95:14–27.PubMedGoogle Scholar
  23. 23.
    Hurwitz RA, Caldwell RL, Girod DA, Brown J. Right ventricular systolic function in adolescents and young adults after Mustard operation for transposition of the great arteries. Am J Cardiol. 1996;77:294–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Millane T, Bernard EJ, Jaeggi E, Howman-Giles RB, Uren RF, Cartmill TB, Hawker RE, Celermajer DS. Role of ischemia and infarction in late right ventricular dysfunction after atrial repair of transposition of the great arteries. J Am Coll Cardiol. 2000;35(6):1661–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Derrick GP, Narang I, White PA, Kelleher A, Bush A, Penny DJ, Redington AN. Failure of stroke volume augmentation during exercise and dobutamine stress is unrelated to load-independent indexes of right ventricular performance after the Mustard operation. Circulation. 2000;102(19 Suppl 3):III154–9.PubMedGoogle Scholar
  26. 26.
    Dore A, Houde C, Chan KL, Ducharme A, Khairy P, Juneau M, Marcotte F, Mercier LA. Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: a multicenter, randomized, placebo-controlled clinical trial. Circulation. 2005;112(16): 2411–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu DT, Zak V, Mahony L, Sleeper LA, Atz AM, Levine JC, Barker PC, Ravishankar C, McCrindle BW, Williams RV, Altmann K, Ghanayem NS, Margossian R, Chung WK, Border WL, Pearson GD, Stylianou MP, Mital S, Pediatric Heart Network Investigators. Enalapril in infants with single ventricle: results of a multicenter randomized trial. Circulation. 2010;122:333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mori Y, Nakazawa M, Tomimatsu H, Momma K. Long-term effect of angiotensin-converting enzyme inhibitor in volume overloaded heart during growth: a controlled pilot study. J Am Coll Cardiol. 2000;36:270–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet. 2000;355(9208): 979–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Roche SL, Redington AN. Right ventricle: wrong targets? Another blow for pharmacotherapy in congenital heart diseases. Circulation. 2013;127(3):314.PubMedCrossRefGoogle Scholar
  31. 31.
    Dos L, Pujadas S, Estruch M, Mas A, Ferreira-González I, Pijuan A, Serra R, Ordóñez-Llanos J, Subirana M, Pons-Lladó G, Marsal JR, García-Dorado D, Casaldàliga J. Eplerenone in systemic right ventricle: double blind randomized clinical trial. The evedes study. Int J Cardiol. 2013;168:5167–73. pii: S0167-5273(13)01388.Google Scholar
  32. 32.
    Morris CD, Outcalt J, Menashe VD. Hypoplastic left heart syndrome: natural history in a geographically defined population. Pediatrics. 1990;85:977–98.PubMedGoogle Scholar
  33. 33.
    Barron DJ, Kilby MD, Davies B, Wright JGC, Jones TJ, Brawn WJ. Hypoplastic left heart syndrome. Lancet. 2009;374:551–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Michel-Behnke I, Akintuerk H, Marquardt I, Mueller M, Thul J, Bauer J, Hagel KJ, Kreuder J, Vogt P, Schranz D. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions. Heart. 2003;89(6):645–50.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Brooks PA, Khoo NS, Mackie AS, Hornberger LK. Right ventricular function in fetal hypoplastic left heart syndrome. J Am Soc Echocardiogr. 2012;25(10):1068–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller TA, Puchalski MD, Weng C, Menon SC. Regional and global myocardial deformation of the fetal right ventricle in hypoplastic left heart syndrome. Prenat Diagn. 2012;32(10): 949–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Bellsham-Revell HR, Tibby SM, Bell AJ, Witter T, Simpson J, Beerbaum P, Anderson D, Austin CB, Greil GF, Razavi R. Serial magnetic resonance imaging in hypoplastic left heart syndrome gives valuable insight into ventricular and vascular adaptation. J Am Coll Cardiol. 2013;61(5):561–70.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, Margossian R, Mital S, Russell J, Rhodes J. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. Pediatric Heart Network Investigators. J Am Coll Cardiol. 2008;52(2):99–107.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, Gersony WM, Gallagher D, Geva T, Margossian R, McCrindle BW, Paridon S, Schwartz M, Stylianou M, Williams RV, Clark III BJ, Pediatric Heart Network Investigators. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52(2):85–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Ugaki S, Khoo NS, Ross DB, Rebeyka IM, Adatia I. Tricuspid valve repair improves early right ventricular and tricuspid valve remodeling in patients with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2013;145(2):446–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Heiner Latus
    • 1
  • Christian Apitz
    • 1
  • Dietmar Schranz
    • 1
    Email author
  1. 1.Department of Pediatric CardiologyJustus-Liebig-UniversityGiessenGermany

Personalised recommendations