Subpulmonary Right Ventricle in Congenital Heart Disease

  • Christian Apitz
  • Heiner Latus
  • Dietmar SchranzEmail author
Part of the Respiratory Medicine book series (RM)


In this chapter we describe the role of the right ventricle in congenital heart disease associated with a volume and pressure overloaded right ventricle. Addressed is the interaction of the right ventricular with the pulmonary circulation and its electro-mechanical and left-to-right as well as right-to-left heart interactions. We highlight the importance of blood flow for cardiac growth, and the need for pathophysiology based therapeutic strategies. In addition, the differences between pulmonary hypertension in adults and children are emphasized.


Pulmonary Arterial Hypertension Right Ventricle Pulmonary Valve Pulmonary Regurgitation Pulmonary Valve Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

310219_1_En_5_MOESM1_ESM.avi (1.8 mb)
Video 5.1 Shown is a critical pulmonary stenosis in a newborn; the almost atretic pulmonary valve with intact ventricular septum was associated with a bipartite right ventricular morphology; the patient was postnatally referred with supra-systemic right ventricular pressure despite severely compromised function and associated tricuspid regurgitation. (AVI 1865 kb)
310219_1_En_5_MOESM2a_ESM.avi (9.8 mb)
Video 5.2a Shown is the echocardiography of the same patient as on Video 5.1. (AVI 9992 kb)
310219_1_En_5_MOESM2b_ESM.avi (7.2 mb)
Video 5.2b The recovered function of the unloaded right ventricle is demonstrated immediately after valve dilatation and duct stenting. (AVI 7409 kb)
310219_1_En_5_MOESM3_ESM.avi (4.9 mb)
Video 5.3 Shown is an angiography in anterior-posterior plane of an almost monopartite right ventricle in a newborn with pulmonary atresia and intact ventricular septum (PAT + IVS). The coronary perfusion is retrograde from the right ventricle (RV) with supra-systemic pressure to the ascending aorta (RV-dependent coronary circulation). (AVI 5013 kb)
310219_1_En_5_MOESM4_ESM.avi (1.1 mb)
Video 5.4 Shown is an MRI-movie in 4-chamber view; the right to left ventricular relationship based on a long-term untreated significant atrium septum defect should be demonstrated. Remarkable is the pseudo-hypoplasia of the unloaded left ventricle, which can be associated with a restrictive physiology. (AVI 1087 kb)
Video 5.5

Shown is an echocardiographic four-chamber view in a patient with Ebstein’s anomaly. By application of the strain-method the abnormal interventricular interaction can be nicely demonstrated. (AVI 23598 kb)


  1. 1.
    Redington AN, Van Arsdell GS, Anderson RH, editors. Congenital diseases in the right heart. London: Springer; 2009.Google Scholar
  2. 2.
    Kohl T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010;31:250–63.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Friehs I, Illigens B, Melnychenko I, Zhong-Hu T, Zeisberg E, Del Nido PJ. An animal model of endocardial fibroelastosis. J Surg Res. 2013;182(1):94–100.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Stressig R, Fimmers R, Axt-Fliedner R, Gembruch U, Kohl T. Association of intrathoracic herniation of the liver with left heart hypoplasia in fetuses with a left diaphragmatic hernia but not in fetuses with a right diaphragmatic hernia. Ultraschall Med. 2011;32 Suppl 2:E151–6.PubMedCrossRefGoogle Scholar
  5. 5.
    deAlmeida A, McQuinn T, Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res. 2007;100: 1363–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Marshall AC, van der Velde ME, Tworetzky W, Gomez CA, Wilkins-Haug L, Benson CB, Jennings RW, Lock JE. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110:253–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Mavroudis C, Backer CL, Kohr LM, Deal BJ, Stinios J, Muster AJ, et al. Bidirectional Glenn shunt in association with congenital heart repairs: the 1 ½ ventricular repair. Ann Thorac Surg. 1999;68:976–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Brookes C, Ravn H, White P, Moeldrup U, Oldershaw P, Redington A. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100:761–7.PubMedCrossRefGoogle Scholar
  9. 9.
    English RF, Anderson RH, Ettedgui JA. Interatrial communication. In: Anderson RH, Baker EJ, Penny DJ, Redington AN, Rigby ML, Wernovsky G, editors. Paediatric cardiology. 3rd ed. Philadelphia: Elsevier; 2009. p. 523–46.Google Scholar
  10. 10.
    Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34:1219–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Murphy JG, Gersh BJ, McGoon MD, Mair DD, Porter CJ, Ilstrup DM, McGoon DC, Puga FJ, Kirklin JW, Danielson GK. Long-term outcome after surgical repair of isolated atrial septal defect—follow-up at 27 to 32 years. N Engl J Med. 1990;323:1645–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Gatzoulis MA, Freeman MA, Siu SC, et al. Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med. 1999;340:839–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Kort HW, Balzer DT, Johnson MC. Resolution of right heart enlargement after closure of secundum atrial septal defect with transcatheter technique. J Am Coll Cardiol. 2001;38: 1528–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Schussler JM, Anwar A, Phillips SD, et al. Effect on right ventricular volume of percutaneous Amplatzer closure of atrial septal defect in adults. Am J Cardiol. 2005;95:993–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Santoro G, Pascotto M, Sarubbi B, et al. Early electrical and geometric changes after percutaneous closure of large atrial septal defect. Am J Cardiol. 2004;93:876–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Apitz C, Webb GD, Redington AN. Tetralogy of Fallot. Lancet. 2009;374(9699):1462–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Davlouros PA, Kilner PJ, Hornung TS, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40:2044–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Tzemos N, Harris L, Carasso S, et al. Adverse left ventricular mechanics in adults with repaired tetralogy of Fallot. Am J Cardiol. 2009;103:420–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Babu-Narayan SV, Goketekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111:2091–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Therrien J, Siu SC, Harris L, et al. Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation. 2001;103:2489–94.PubMedCrossRefGoogle Scholar
  22. 22.
    van Straten A, Vliegen HW, Hazekamp MG, et al. Right ventricular function after pulmonary valve replacement in patients with tetralogy of Fallot. Radiology. 2004;233:824–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hagel KJ, Michel-Behnke I, Bauer J, Akintürk H, Schranz D. Percutaneous pulmonary valve implantation for treatment of a severe bovine pulmonary stenosis in a child with isolated dextrocardia, ccTGA after double switch repair. Clin Res Cardiol. 2009;98(3):199–200.PubMedCrossRefGoogle Scholar
  24. 24.
    Jux C, Akintuerk H, Schranz D. Two melodies in concert: transcatheter double-valve replacement. Catheter Cardiovasc Interv. 2012;80(6):997–1001.PubMedCrossRefGoogle Scholar
  25. 25.
    Celermajer DS, Bull C, Till JA, et al. Ebstein’s anomaly: presentation and outcome from fetus to adult. J Am Coll Cardiol. 1994;23:170–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Schranz D, Michel-Behnke I, Heyer R, Vogel M, Bauer J, Valeske K, Akintürk H, Jux C. Stent implantation of the arterial duct in newborns with a truly duct-dependent pulmonary circulation: a single-center experience with emphasis on aspects of the interventional technique. J Interv Cardiol. 2010;23(6):581–8.PubMedCrossRefGoogle Scholar
  27. 27.
    da Silva JP, da Silva LF. Ebstein’s anomaly of the tricuspid valve: the cone repair. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2012;15(1):38–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Chauvaud S, Berrebi A, d’Attellis N, et al. Ebstein’s anomaly: repair based on functional analysis. Eur J Cardiothorac Surg. 2003;23:525–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Di Russo GB, Gaynor JW. Ebstein’s anomaly: indications for repair and surgical technique. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 1999;2:35–50.PubMedGoogle Scholar
  30. 30.
    Ammash NM, Warnes CA, Connolly HM, et al. Mimics of Ebstein’s anomaly. Am Heart J. 1997;134:508–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Apitz C, Honjo O, Friedberg MK, Assad RS, Van Arsdell G, Humpl T, Redington AN. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60(1):17–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Apitz C, Honjo O, Humpl T, Li J, Assad RS, Cho MY, Hong J, Friedberg MK, Redington AN. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144(6): 1494–501.PubMedCrossRefGoogle Scholar
  35. 35.
    Friedberg MK, Cho MY, Li J, Assad RS, Sun M, Rohailla S, Honjo O, Apitz C, Redington AN. Adverse biventricular remodeling in isolated right ventricular hypertension is mediated by increased TGFβ1 signaling and is abrogated by angiotensin receptor blockade. Am J Respir Cell Mol Biol. 2013;49:19–28.Google Scholar
  36. 36.
    Derrick G, Bonhoeffer P, Anderson RH. Pulmonary stenosis. In: Anderson RH, Baker EJ, Penny DJ, Redington AN, Rigby ML, Wernovsky G, editors. Paediatric cardiology. 3rd ed. Philadelphia: Elsevier; 2009. p. 895–915.Google Scholar
  37. 37.
    Graham Jr TP. Ventricular performance in congenital heart disease. Circulation. 1991;84: 2259–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118:e714–833.PubMedCrossRefGoogle Scholar
  39. 39.
    Jarrar M, Betbout F, Farhat MB, Maatouk F, Gamra H, Addad F, et al. Long-term invasive and noninvasive results of percutaneous balloon pulmonary valvuloplasty in children, adolescents, and adults. Am Heart J. 1999;138:950–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Spiewak M, Biernacka EK, Malek LA, et al. Right ventricular outflow tract obstruction as a confounding factor in the assessment of the impact of pulmonary regurgitation on the right ventricular size and function in patients after repair of tetralogy of Fallot. J Magn Reson Imaging. 2011;33(5):1040–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Latus H, Gummel K, Rupp S, et al. Beneficial effects of residual right ventricular outflow tract obstruction on right ventricular volume and function in patients after repair of tetralogy of Fallot. Pediatr Cardiol. 2013;34(2):424–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J. 1990; 63:45–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bogaard HJ, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet. 2000;355(9208): 979–83.PubMedCrossRefGoogle Scholar
  45. 45.
    del Cerro MJ, Abman S, Diaz G, et al. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI Pediatric Taskforce, Panama 2011. Pulm Circ. 2011;1:286–98.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Berger RM, Beghetti M, Humpl T, Raskob GE, Ivy DD, Jing ZC, Bonnet D, Schulze-Neick I, Barst RJ. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet. 2012;379(9815):537–46.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Humpl T, Schulze-Neick I. Pulmonary vascular disease. In: Anderson RH, Baker EJ, Penny DJ, Redington AN, Rigby ML, Wernovsky G, editors. Paediatric cardiology. 3rd ed. Philadelphia: Elsevier; 2009. p. 1147–61.Google Scholar
  48. 48.
    Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transpl. 1996;15:100–5.Google Scholar
  49. 49.
    Blanc J, Vouhe P, Bonnet D. Potts shunt in patients with pulmonary hypertension. N Engl J Med. 2004;350:623.PubMedCrossRefGoogle Scholar
  50. 50.
    Esch JJ, Shah PB, Cockrill BA, Farber HW, Landzberg MJ, Mehra MR, Mullen MP, Opotowsky AR, Waxman AB, Lock JE, Marshall AC. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant. 2013;32(4):381–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Schindler MB, Hislop AA, Haworth SG. Postnatal changes in response to norepinephrine in the normal and pulmonary hypertensive lung. Am J Respir Crit Care Med. 2004;170(6):641–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christian Apitz
    • 1
  • Heiner Latus
    • 1
  • Dietmar Schranz
    • 1
    Email author
  1. 1.Department of Pediatric CardiologyJustus-Liebig-UniversityGiessenGermany

Personalised recommendations