The Impact of Cell Phone, Laptop Computer, and Microwave Oven Usage on Male Fertility



Cell phones, laptop computers, and microwave ovens have become a vital part of modern life. All three of these technological fields use electromagnetic waves (EMWs) within a frequency range known as microwaves. Current literature on EMW radiation effects on male reproductive health remains controversial with mixed and inconclusive data. This may prove most important in subfertile men using laptops placed in their laps, in men with cell phone use and storage on either the hip or in a pants pocket, and men standing in close proximity to active microwave ovens.

This chapter will review the current data regarding male fertility and cell phone, laptop computer, and microwave oven exposure. Given the safety of EMWs remains undefined, further studies are necessary to clarify this potentially important public health issue and possible cause of unexplained male infertility.


Cell Phone Sperm Motility Male Infertility Specific Absorption Rate Male Reproductive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Habash RW, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006;34(6): 459–89.PubMedGoogle Scholar
  2. 2.
    Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88(4): 957–64.PubMedGoogle Scholar
  3. 3.
    Dasdag S, Ketani MA, Akdag Z, Ersay AR, Sari I, Demirtas OC, et al. Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res. 1999;27(3):219–23.PubMedGoogle Scholar
  4. 4.
    Dasdag S, Zulkuf Akdag M, Aksen F, Yilmaz F, Bashan M, Mutlu Dasdag M, et al. Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics. 2003;24(3):182–8.PubMedGoogle Scholar
  5. 5.
    Cell phones and specific absorption rate [Internet]. 2013 June 4. Accessed 4 June 2013 [updated 2013 June 4; cited 2013 June 4].
  6. 6.
    Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 2005;28(3):171–9.PubMedGoogle Scholar
  7. 7.
    Ha BY. Stabilization and destabilization of cell membranes by multivalent ions. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(5 Pt 1):051902.PubMedGoogle Scholar
  8. 8.
    Blackman CF, Benane SG, Kinney LS, Joines WT, House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res. 1982; 92(3):510–20.PubMedGoogle Scholar
  9. 9.
    Abou-haila A, Tulsiani DR. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys. 2009; 485(1):72–81.PubMedGoogle Scholar
  10. 10.
    Hamada A, Singh A, Agarwal A. Cell phones and their impact on male fertility: fact or fiction. Open Reprod Sci J. 2011;5(3):125–37.Google Scholar
  11. 11.
    Zhao M, Xia L, Chen GQ. Protein kinase cdelta in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz). 2012;60(5):361–72.Google Scholar
  12. 12.
    Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7(4):281–94.PubMedGoogle Scholar
  13. 13.
    Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev. 2010;77(2): 95–104.PubMedGoogle Scholar
  14. 14.
    Fejes I, Zavaczki Z, Szollosi J, Koloszar S, Daru J, Kovacs L, et al. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005; 51(5):385–93.PubMedGoogle Scholar
  15. 15.
    Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.PubMedGoogle Scholar
  16. 16.
    Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–25.PubMedGoogle Scholar
  17. 17.
    Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, Komesli G, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res. 2006;37(7):840–3.PubMedGoogle Scholar
  18. 18.
    De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.PubMedGoogle Scholar
  20. 20.
    Kesari KK, Kumar S, Behari J. Mobile phone usage and male infertility in Wistar rats. Indian J Exp Biol. 2010;48(10):987–92.PubMedGoogle Scholar
  21. 21.
    Wang XW, Ding GR, Shi CH, Zeng LH, Liu JY, Li J, et al. Mechanisms involved in the blood-testis barrier increased permeability induced by EMP. Toxicology. 2010;276(1):58–63.PubMedGoogle Scholar
  22. 22.
    Wang XW, Ding GR, Shi CH, Zhao T, Zhang J, Zeng LH, et al. Effect of electromagnetic pulse exposure on permeability of blood-testicle barrier in mice. Biomed Environ Sci. 2008;21(3):218–21.PubMedGoogle Scholar
  23. 23.
    Hou WG, Zhao J, Li Z, Li W, Li T, Xiong LZ, et al. Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier. Urology. 2012;80(1):225 e1–6.Google Scholar
  24. 24.
    Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64(1):16–64.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ghabriel MN, Lu JJ, Hermanis G, Zhu C, Setchell BP. Expression of a blood-brain barrier-specific antigen in the reproductive tract of the male rat. Reproduction. 2002;123(3):389–97.PubMedGoogle Scholar
  26. 26.
    Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO. Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med. 2008;27(3):215–29.PubMedGoogle Scholar
  27. 27.
    Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111(7):881–3; discussion A408.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Fritze K, Sommer C, Schmitz B, Mies G, Hossmann KA, Kiessling M, et al. Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 1997;94(5):465–70.PubMedGoogle Scholar
  29. 29.
    Grafstrom G, Nittby H, Brun A, Malmgren L, Persson BR, Salford LG, et al. Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res Bull. 2008;77(5):257–63.PubMedGoogle Scholar
  30. 30.
    Finnie JW, Blumbergs PC, Manavis J, Utteridge TD, Gebski V, Davies RA, et al. Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Pathology. 2002; 34(4):344–7.PubMedGoogle Scholar
  31. 31.
    Franke H, Ringelstein EB, Stogbauer F. Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics. 2005;26(7):529–35.PubMedGoogle Scholar
  32. 32.
    Franke H, Streckert J, Bitz A, Goeke J, Hansen V, Ringelstein EB, et al. Effects of Universal Mobile Telecommunications System (UMTS) electromagnetic fields on the blood-brain barrier in vitro. Radiat Res. 2005;164(3):258–69.PubMedGoogle Scholar
  33. 33.
    Kuribayashi M, Wang J, Fujiwara O, Doi Y, Nabae K, Tamano S, et al. Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Bioelectromagnetics. 2005;26(7):578–88.PubMedGoogle Scholar
  34. 34.
    de Gannes FP, Billaudel B, Taxile M, Haro E, Ruffie G, Leveque P, et al. Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration. Radiat Res. 2009;172(3): 359–67.PubMedGoogle Scholar
  35. 35.
    Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002;70(2–3):120–9.PubMedGoogle Scholar
  36. 36.
    McNamee JP, Chauhan V. Radiofrequency radiation and gene/protein expression: a review. Radiat Res. 2009;172(3):265–87.PubMedGoogle Scholar
  37. 37.
    Cotgreave IA. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking? Arch Biochem Biophys. 2005;435(1):227–40.PubMedGoogle Scholar
  38. 38.
    Henkel R. The impact of oxidants on sperm function. Andrologia. 2005;37(6):205–6.PubMedGoogle Scholar
  39. 39.
    Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.PubMedGoogle Scholar
  40. 40.
    Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas Jr AJ, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–38.PubMedGoogle Scholar
  41. 41.
    Pasqualotto FF, Sharma RK, Kobayashi H, Nelson DR, Thomas Jr AJ, Agarwal A. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22(2):316–22.PubMedGoogle Scholar
  42. 42.
    Kesari KK, Behari J. Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med. 2012;31(3):213–22.PubMedGoogle Scholar
  43. 43.
    Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–44.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Jin Z, Zong C, Jiang B, Zhou Z, Tong J, Cao Y. The effect of combined exposure of 900 MHz radiofrequency fields and doxorubicin in HL-60 cells. PLoS One. 2012;7(9):e46102.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics (Sao Paulo). 2012;67(7):785–92.Google Scholar
  46. 46.
    Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.PubMedGoogle Scholar
  47. 47.
    Blank M, Goodman R. Electromagnetic fields may act directly on DNA. J Cell Biochem. 1999;75(3): 369–74.PubMedGoogle Scholar
  48. 48.
    Kesari KK, Kumar S, Behari J. Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats. Appl Biochem Biotechnol. 2011;164(4): 546–59.PubMedGoogle Scholar
  49. 49.
    Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.PubMedGoogle Scholar
  51. 51.
    De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.PubMedGoogle Scholar
  52. 52.
    Oger I, Da Cruz C, Panteix G, Menezo Y. Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote. 2003;11(4): 367–71.PubMedGoogle Scholar
  53. 53.
    Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.PubMedGoogle Scholar
  54. 54.
    Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl. 2004;6(2):139–48.PubMedGoogle Scholar
  55. 55. Digital wireless basics: frequencies [Internet]. Accessed 22 July 2012.
  56. 56.
    How cell-phone radiation works [Internet]. Accessed 22 July 2012.
  57. 57.
    Deepinder F, Makker K, Agarwal A. Cell phones and male infertility: dissecting the relationship. Reprod Biomed Online. 2007;15(3):266–70.PubMedGoogle Scholar
  58. 58.
    Cleveland Jr JR, Sylvar DM, Ulcek JL. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields. August 1997 [Internet]. Accessed 22 July 2012.
  59. 59.
    Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7:114.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Straume A, Oftedal G, Johnsson A. Skin temperature increase caused by a mobile phone: a methodological infrared camera study. Bioelectromagnetics. 2005;26(6):510–9.PubMedGoogle Scholar
  61. 61.
    Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405(3):559–68.PubMedCentralPubMedGoogle Scholar
  62. 62.
    D’Costa H, Trueman G, Tang L, Abdel-rahman U, Abdel-rahman W, Ong K, et al. Human brain wave activity during exposure to radiofrequency field emissions from mobile phones. Australas Phys Eng Sci Med. 2003;26(4):162–7.PubMedGoogle Scholar
  63. 63.
    Kramarenko AV, Tan U. Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci. 2003;113(7):1007–19.PubMedGoogle Scholar
  64. 64.
    Oftedal G, Wilen J, Sandstrom M, Mild KH. Symptoms experienced in connection with mobile phone use. Occup Med (Lond). 2000;50(4):237–45.Google Scholar
  65. 65.
    Hillert L, Akerstedt T, Lowden A, Wiholm C, Kuster N, Ebert S, et al. The effects of 884 MHz GSM wireless communication signals on headache and other symptoms: an experimental provocation study. Bioelectromagnetics. 2008;29(3):185–96.PubMedGoogle Scholar
  66. 66.
    Volkow ND, Tomasi D, Wang GJ, Vaska P, Fowler JS, Telang F, et al. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA. 2011;305(8):808–13.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Hardell L, Carlberg M, Hansson MK. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology. 2013;20(2):85–110.PubMedGoogle Scholar
  68. 68.
    Roosli M, Michel G, Kuehni CE, Spoerri A. Cellular telephone use and time trends in brain tumour mortality in Switzerland from 1969 to 2002. Eur J Cancer Prev. 2007;16(1):77–82.PubMedGoogle Scholar
  69. 69.
    Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 2007;14(1):169–72.PubMedGoogle Scholar
  70. 70.
    Kilgallon SJ, Simmons LW. Image content influences men’s semen quality. Biol Lett. 2005;1(3): 253–5.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Gutschi T, Mohamad Al-Ali B, Shamloul R, Pummer K, Trummer H. Impact of cell phone use on men’s semen parameters. Andrologia. 2011;43(5):312–6.PubMedGoogle Scholar
  72. 72.
    Falzone N, Huyser C, Becker P, Leszczynski D, Franken DR. The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl. 2011;34(1):20–6.PubMedGoogle Scholar
  73. 73.
    Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.PubMedGoogle Scholar
  74. 74.
    Shen HM, Chia SE, Ong CN. Evaluation of oxidative DNA damage in human sperm and its association with male infertility. J Androl. 1999;20(6):718–23.PubMedGoogle Scholar
  75. 75.
    Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1–2):66–9.PubMedGoogle Scholar
  76. 76.
    Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo). 2009; 64(6):561–5.Google Scholar
  77. 77.
    Ozlem Nisbet H, Nisbet C, Akar A, Cevik M, Karayigit MO. Effects of exposure to electromagnetic field (1.8/0.9 GHz) on testicular function and structure in growing rats. Res Vet Sci. 2012;93(2): 1001–5.PubMedGoogle Scholar
  78. 78.
    Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Yegin D. Mobile phone exposure does not induce apoptosis on spermatogenesis in rats. Arch Med Res. 2008;39(1):40–4.PubMedGoogle Scholar
  79. 79.
    Meo SA, Arif M, Rashied S, Khan MM, Vohra MS, Usmani AM, et al. Hypospermatogenesis and spermatozoa maturation arrest in rats induced by mobile phone radiation. J Coll Physicians Surg Pak. 2011; 21(5):262–5.PubMedGoogle Scholar
  80. 80.
    Celik S, Aridogan IA, Izol V, Erdogan S, Polat S, Doran S. An evaluation of the effects of long-term cell phone use on the testes via light and electron microscope analysis. Urology. 2012;79(2):346–50.PubMedGoogle Scholar
  81. 81.
    Meo SA, Al-Drees AM, Husain S, Khan MM, Imran MB. Effects of mobile phone radiation on serum testosterone in Wistar albino rats. Saudi Med J. 2010;31(8):869–73.PubMedGoogle Scholar
  82. 82.
    Wang SM, Wang DW, Peng RY, Gao YB, Yang Y, Hu WH, et al. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice]. Zhonghua Nan Ke Xue. 2003;9(5):327–30.PubMedGoogle Scholar
  83. 83.
    Zhou W, Wang XB, Yang JQ, Liu Y, Zhang GB. [Influence of electromagnetic irradiation on P450scc mRNA expression in rat testis tissues and protective effect of the shield]. Zhonghua Nan Ke Xue. 2005;11(4):269–71.PubMedGoogle Scholar
  84. 84.
    Ozguner M, Koyu A, Cesur G, Ural M, Ozguner F, Gokcimen A, et al. Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi Med J. 2005; 26(3):405–10.PubMedGoogle Scholar
  85. 85.
    Forgacs Z, Somosy Z, Kubinyi G, Bakos J, Hudak A, Surjan A, et al. Effect of whole-body 1800 MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice. Reprod Toxicol. 2006;22(1):111–7.PubMedGoogle Scholar
  86. 86.
    Schoemaker MJ, Swerdlow AJ. Risk of pituitary tumors in cellular phone users: a case-control study. Epidemiology. 2009;20(3):348–54.PubMedGoogle Scholar
  87. 87.
    de Seze R, Fabbro-Peray P, Miro L. GSM radiocellular telephones do not disturb the secretion of antepituitary hormones in humans. Bioelectromagnetics. 1998;19(5):271–8.PubMedGoogle Scholar
  88. 88.
    Djeridane Y, Touitou Y, de Seze R. Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res. 2008;169(3):337–43.PubMedGoogle Scholar
  89. 89.
    Dada R, Gupta NP, Kucheria K. Spermatogenic arrest in men with testicular hyperthermia. Teratog Carcinog Mutagen. 2003;Suppl 1:235–43.PubMedGoogle Scholar
  90. 90.
    Ahmad G, Moinard N, Esquerre-Lamare C, Mieusset R, Bujan L. Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men. Fertil Steril. 2012;97(3):546–53.PubMedGoogle Scholar
  91. 91.
    Sheynkin Y, Jung M, Yoo P, Schulsinger D, Komaroff E. Increase in scrotal temperature in laptop computer users. Hum Reprod. 2005;20(2):452–5.PubMedGoogle Scholar
  92. 92.
    Sheynkin Y, Welliver R, Winer A, Hajimirzaee F, Ahn H, Lee K. Protection from scrotal hyperthermia in laptop computer users. Fertil Steril. 2010;95(2):647–51.PubMedGoogle Scholar
  93. 93.
    Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129(4): 505–14.PubMedGoogle Scholar
  94. 94.
    Shiraishi K, Takihara H, Matsuyama H. Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol. 2009;28(3):359–64.PubMedGoogle Scholar
  95. 95.
    Oni O, Amuda D, Gilbert C. Effects of radiofrequency radiation from WiFi devices on human ejaculated semen. Int J Res Rev Appl Sci. 2011;19: 292–4.Google Scholar
  96. 96.
    Avendano C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97(1):39–45.e2.PubMedGoogle Scholar
  97. 97.
    Dore JF, Chignol MC. Laptop computers with Wi-Fi decrease human sperm motility and increase sperm DNA fragmentation. Fertil Steril. 2012;97(4):e12; author reply e3.PubMedGoogle Scholar
  98. 98.
    Choy JT, Brannigan RE. Words of wisdom. Re: Use of laptop computers connected to Internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Eur Urol. 2012;62(6): 1196–7.PubMedGoogle Scholar
  99. 99.
    Alhekail ZO. Electromagnetic radiation from microwave ovens. J Radiol Prot. 2001;21(3):251–8.PubMedGoogle Scholar
  100. 100.
    Microwave oven radiation. [Internet]. Accessed 7 Mar 2013. [Updated 2013 Mar 7; cited 2013 Mar 7].
  101. 101.
    Kesari KK, Behari J. Microwave exposure affecting reproductive system in male rats. Appl Biochem Biotechnol. 2010;162(2):416–28.PubMedGoogle Scholar
  102. 102.
    Kumar S, Kesari KK, Behari J. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo). 2011;66(7):1237–45.Google Scholar
  103. 103.
    Hallak J, Sharma RK, Pasqualotto FF, Ranganathan P, Thomas Jr AJ, Agarwal A. Creatine kinase as an indicator of sperm quality and maturity in men with oligospermia. Urology. 2001;58(3): 446–51.PubMedGoogle Scholar
  104. 104.
    Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health. 2011; 27(5):455–63.PubMedGoogle Scholar
  105. 105.
    Kim JY, Kim HT, Moon KH, Shin HJ. Long-term exposure of rats to 2.45 GHz electromagnetic field: effects on reproductive function. Korean J Urol. 2007;48:1308–14.Google Scholar
  106. 106.
    Cleary SF, Liu LM, Graham R, East J. In vitro fertilization of mouse ova by spermatozoa exposed isothermally to radio-frequency radiation. Bioelectromagnetics. 1989;10(4):361–9.PubMedGoogle Scholar
  107. 107.
    Jepsen P, Johnsen SP, Gillman MW, Sorensen HT. Interpretation of observational studies. Heart. 2004;90(8):956–60.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Lee HJ, Pack JK, Kim TH, Kim N, Choi SY, Lee JS, et al. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics. 2010;31(7):528–34.PubMedGoogle Scholar
  109. 109.
    Imai N, Kawabe M, Hikage T, Nojima T, Takahashi S, Shirai T. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med. 2011;57(4):204–9.PubMedGoogle Scholar
  110. 110.
    Mouradi R, Desai N, Erdemir A, Agarwal A. The use of FDTD in establishing in vitro experimentation conditions representative of lifelike cell phone radiation on the spermatozoa. Health Phys. 2012;102(1):54–62.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Urology InstituteUniversity Hospitals Case Medical CenterClevelandUSA
  2. 2.Center for Reproductive MedicineCleveland Clinic Foundation/Glickman Urological and Kidney InstituteClevelandUSA

Personalised recommendations