Advertisement

Motivation and Cognitive Control: Going Beyond Monetary Incentives

  • Marie K. Krug
  • Todd S. Braver
Chapter

Abstract

This chapter examines the topic of motivation–cognition interactions from a cognitive neuroscience perspective. More specifically, we consider the use of primary rewards (e.g., liquids) as motivational incentives during cognitive task performance, in comparison to monetary rewards, which are the traditional form of incentive used in most human experimental studies. We review behavioral and neuroscience literature suggesting that motivationally based performance enhancement is not ubiquitous, but when present, appears to reflect modulation of cognitive control processes supported by frontoparietal cortex via interactions with subcortical reward-processing circuits. Further, we compare and contrasts findings from studies using monetary rewards and those employing primary rewards, suggesting possible reasons for similarities and differences, as well as future directions to address unanswered questions. Finally, and most importantly, we discuss the advantages of using primary rewards as incentives to further explore motivation–cognition interactions. We present pilot data as a sample case study to demonstrate how primary rewards can offer methodological, theoretical, and experimental leverage. We conclude by presenting an indepth discussion of questions (and corresponding experimental paradigms) that can be most profitably investigated through the use of primary rewards, with the goal of providing a more comprehensive characterization of the nature of motivation–cognition interactions in the human brain.

Keywords

Cognitive Control Ventral Striatum Monetary Incentive Monetary Reward Temporal Discount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aarts, H., Custers, R., & Marien, H. (2008). Preparing and motivating behavior outside of awareness. Science, 319(5870), 1639.PubMedCrossRefGoogle Scholar
  2. Beck, S. M., Locke, H. S., Savine, A. C., Jimura, K., & Braver, T. S. (2010). Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS ONE, 5(2), e9251.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Beilock, S. (2010). Choke: What the secrets of the brain reveal about getting it right when you have to. New York: Free Press.Google Scholar
  4. Bickel, W. K., Pitcock, J. A., Yi, R., & Angtuaco, E. J. (2009). Congruence of BOLD response across intertemporal choice conditions: fictive and real money gains and losses. Journal of Neuroscience, 29(27), 8839–8846.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bijleveld, E., Custers, R., & Aarts, H. (2010). Unconscious reward cues increase invested effort, but do not change speed-accuracy tradeoffs. Cognition, 115(2), 330–335.PubMedCrossRefGoogle Scholar
  6. Bijleveld, E., Custers, R., & Aarts, H. (2012). Human reward pursuit: from rudimentary to higher-level functions. Current Directions in Psychological Science, 21(3), 194–199.CrossRefGoogle Scholar
  7. Bonner, S. E., Hastie, R., Sprinkle, G. B., & Young, S. M. (2000). A review of the effects of financial incentives on performance in laboratory tasks: Implications for management accounting. Journal of Management and Accounting Research, 12, 19–64.CrossRefGoogle Scholar
  8. Bonner, S. E., & Sprinkle, G. B. (2002). The effects of monetary incentives on effort and task performance: theories, evidence, and a framework for research. Accounting, Organizations and Society, 27, 303–345.CrossRefGoogle Scholar
  9. Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Science, 16(2), 106–113.CrossRefGoogle Scholar
  10. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford, England: Oxford University Press.Google Scholar
  11. Bray, S., Rangel, A., Shimojo, S., Balleine, B., & O’Doherty, J. P. (2008). The neural mechanisms underlying the influence of pavlovian cues on human decision making. Journal of Neuroscience, 28(22), 5861–5866.PubMedCrossRefGoogle Scholar
  12. Bray, S., Shimojo, S., & O’Doherty, J. P. (2010). Human medial orbitofrontal cortex is recruited during experience of imagined and real rewards. Journal of Neurophysiology, 103(5), 2506–2512.PubMedCrossRefGoogle Scholar
  13. Camerer, C. F., & Hogarth, R. M. (1999). The effects of financial incentive in experiments: a review and capital-labor-production framework. Journal of Risk and Uncertainty, 19(1–3), 7–42.CrossRefGoogle Scholar
  14. Capa, R. L., & Custers, R. (2014). Conscious and unconscious influences of money: Two sides of the same coin? In E. Bijleveld & H. Aarts (Eds.), The psychological science of money. New York: Springer.Google Scholar
  15. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRefGoogle Scholar
  16. Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19(8), 1153–1160.PubMedCrossRefGoogle Scholar
  17. Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784.PubMedCrossRefGoogle Scholar
  18. Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of motivational systems. In H. Pashler & R. Gallistel (Eds.), Steven’s handbook of experimental psychology (3rd ed.), Vol. 3: Learning, motivation, and emotion (pp. 497–533). Hoboken, NJ: Wiley.Google Scholar
  19. Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Geurts, D. E., Huys, Q. J., den Ouden, H. E., & Cools, R. (2013). Aversive pavlovian control of instrumental behavior in humans. Journal Cognitive Neuroscience, 25(9), 1428–1441.CrossRefGoogle Scholar
  21. Gilbert, A. M., & Fiez, J. A. (2004). Integrating rewards and cognition in the frontal cortex. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 540–552.CrossRefGoogle Scholar
  22. Gneezy, U., & Rustichini, A. (2000). Pay enough or don’t pay at all. The Quarterly Journal of Economics, 791–810.Google Scholar
  23. Hassani, O. K., Cromwell, H. C., & Schultz, W. (2001). Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. Journal of Neurophysiology, 85(6), 2477–2489.PubMedGoogle Scholar
  24. Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: behavioral and pupillometric data. Psychophysiology, 45(1), 119–129.PubMedGoogle Scholar
  25. Hubner, R., & Schlosser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin and Review, 17(6), 821–826.PubMedCrossRefGoogle Scholar
  26. Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8871–8876.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1(5), 411–416.PubMedCrossRefGoogle Scholar
  28. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004). Reward-predicting activity of dopamine and caudate neurons—A possible mechanism of motivational control of saccadic eye movement. Journal of Neurophysiology, 91(2), 1013–1024.PubMedCrossRefGoogle Scholar
  29. Kim, H., Shimojo, S., & O’Doherty, J. P. (2011). Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cerebral Cortex, 21(4), 769–776.PubMedCrossRefGoogle Scholar
  30. Kinnison, J., Padmala, S., Choi, J. M., & Pessoa, L. (2012). Network analysis reveals increased integration during emotional and motivational processing. Journal of Neuroscience, 32(24), 8361–8372.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lamy, M. (2007). For juice or money: the neural response to intertemporal choice of primary and secondary rewards. Journal of Neuroscience, 27(45), 12121–12122.PubMedCrossRefGoogle Scholar
  32. Leon, M. I., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24(2), 415–425.PubMedCrossRefGoogle Scholar
  33. Levy, D. J., & Glimcher, P. W. (2011). Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. Journal of Neuroscience, 31(41), 14693–14707.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038.PubMedCrossRefGoogle Scholar
  35. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112.CrossRefGoogle Scholar
  36. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27(21), 5796–5804.PubMedCrossRefGoogle Scholar
  37. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503–507.PubMedCrossRefGoogle Scholar
  38. Miyapuram, K. P., Tobler, P. N., Gregorios-Pippas, L., & Schultz, W. (2012). BOLD responses in reward regions to hypothetical and imaginary monetary rewards. NeuroImage, 59(2), 1692–1699.PubMedCrossRefGoogle Scholar
  39. Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., et al. (2009). Choking on the money: reward-based performance decrements are associated with midbrain activity. Psychological Science, 20(8), 955–962.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Mohanty, A., Gitelman, D. R., Small, D. M., & Mesulam, M. M. (2008). The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cerebral Cortex, 18(11), 2604–2613.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Moller, A., & Deci, E. L. (2014). The psychology of getting paid: An integrated perspective. In E. Bijleveld & H. Aarts (Eds.), The psychological science of money. New York: Springer.Google Scholar
  42. Montague, P. R., & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36(2), 265–284.PubMedCrossRefGoogle Scholar
  43. Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20911–20916.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual search. Journal of Vision, 9(1), 31.1–31.16.CrossRefGoogle Scholar
  45. Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5232–5237.PubMedCentralPubMedCrossRefGoogle Scholar
  46. O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.PubMedCrossRefGoogle Scholar
  47. O’Doherty, J. P., Buchanan, T. W., Seymour, B., & Dolan, R. J. (2006). Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron, 49(1), 157–166.PubMedCrossRefGoogle Scholar
  48. Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal Cognitive Neuroscience, 23(11), 3419–3432.CrossRefGoogle Scholar
  49. Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4, 17.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., et al. (2002). The neural system that bridges reward and cognition in humans: an fMRI study. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5669–5674.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Review Neuroscience, 9(7), 545–556.CrossRefGoogle Scholar
  52. Rolls, E. T. (1999). The brain and emotion. Oxford, England: Oxford University Press.Google Scholar
  53. Schultz, W. (2001). Reward signaling by dopamine neurons. The Neuroscientist, 7(4), 293–302.PubMedCrossRefGoogle Scholar
  54. Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.PubMedCrossRefGoogle Scholar
  55. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.PubMedCrossRefGoogle Scholar
  56. Sescousse, G., Caldu, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681–696.CrossRefGoogle Scholar
  57. Sescousse, G., Redoute, J., & Dreher, J. C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. Journal of Neuroscience, 30(39), 13095–13104.PubMedCrossRefGoogle Scholar
  58. Shen, Y. J., & Chun, M. M. (2011). Increases in rewards promote flexible behavior. Attention, Perception, & Psychophysics, 73(3), 938–952.CrossRefGoogle Scholar
  59. Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., & Mesulam, M. M. (2005). Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cerebral Cortex, 15(12), 1855–1865.PubMedCrossRefGoogle Scholar
  60. Smith, V. L., & Walker, J. M. (1993). Monetary rewards and decision cost in experimental economics. Economic Inquiry, 31(2), 245–261.CrossRefGoogle Scholar
  61. Talmi, D., Dayan, P., Kiebel, S. J., Frith, C. D., & Dolan, R. J. (2009). How humans integrate the prospects of pain and reward during choice. Journal of Neuroscience, 29(46), 14617–14626.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Talmi, D., Seymour, B., Dayan, P., & Dolan, R. J. (2008). Human pavlovian-instrumental transfer. Journal of Neuroscience, 28(2), 360–368.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Taylor, S. F., Welsh, R. C., Wager, T. D., Phan, K. L., Fitzgerald, K. D., & Gehring, W. J. (2004). A functional neuroimaging study of motivation and executive function. NeuroImage, 21(3), 1045–1054.PubMedCrossRefGoogle Scholar
  64. Tobler, P. N., Fletcher, P. C., Bullmore, E. T., & Schultz, W. (2007). Learning-related human brain activations reflecting individual finances. Neuron, 54(1), 167–175.PubMedCrossRefGoogle Scholar
  65. Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27(15), 4019–4026.PubMedCrossRefGoogle Scholar
  66. Valentin, V. V., & O’Doherty, J. P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102(6), 3384–3391.PubMedCrossRefGoogle Scholar
  67. Veling, H., & Aarts, H. (2010). Cueing task goals and earning money: Relatively high monetary rewards reduce failures to act on goals in a Stroop task. Motivation and Emotion, 34(2), 184–190.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Visscher, K. M., Miezin, F. M., Kelly, J. E., Buckner, R. L., Donaldson, D. I., McAvoy, M. P., et al. (2003). Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage, 19(4), 1694–1708.PubMedCrossRefGoogle Scholar
  69. Watanabe, M. (2007). Role of anticipated reward in cognitive behavioral control. Current Opinion in Neurobiology, 17(2), 213–219.PubMedCrossRefGoogle Scholar
  70. Watanabe, M., Cromwell, H. C., Tremblay, L., Hollerman, J. R., Hikosaka, K., & Schultz, W. (2001). Behavioral reactions reflecting differential reward expectations in monkeys. Experimental Brain Research, 140(4), 511–518.PubMedCrossRefGoogle Scholar
  71. Watanabe, M., Hikosaka, K., Sakagami, M., & Shirakawa, S. (2005). Functional significance of delay-period activity of primate prefrontal neurons in relation to spatial working memory and reward/omission-of-reward expectancy. Experimental Brain Research, 166(2), 263–276.PubMedCrossRefGoogle Scholar
  72. Watanabe, M., & Sakagami, M. (2007). Integration of cognitive and motivational context information in the primate prefrontal cortex. Cerebral Cortex, 17(Suppl 1), i101–i109.PubMedCrossRefGoogle Scholar
  73. Zedelius, C. M., Veling, H., & Aarts, H. (2011). Boosting or choking—How conscious and unconscious reward processing modulate the active maintenance of goal-relevant information. Consciousness and Cognition, 20(2), 355–362.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PsychologyWashington University in Saint LouisSaint LouisUSA

Personalised recommendations