Skip to main content

The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential

  • Chapter
  • First Online:
Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

APC:

Antigen presenting cell

ASD:

Autism spectrum disorder

BDNF:

Brain derived neurotrophic factor

CNS:

Central nervous system

DC:

Dendritic cell

DHA:

Docosahexaenoic acid

DSS:

Dextran sodium sulphate

EC:

Enteroendocrine cells

ECC:

Enterochromaffin cells

ENS:

Enteric nervous system

EPA:

Eicosapentaenoic acid

GABA:

Gamma-aminobutyric acid

GALT:

Gut-associated lymphoid tissues

GI:

Gastrointestinal

HDAC:

Histone deacetylase

HPA:

Hypothalamic-pituitary-adrenal axis

IBS:

Irritable bowel syndrome

IDO:

Indoleamine-2,3-dioxygenase

NMDAR:

N-methyl-d-aspartate receptor

NPY:

Neuropeptide Y

SCFA:

Short chain fatty acid

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

TDO:

Tryptophan 2,3-dioxygenase

Treg:

The regulatory T cells

References

  1. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  2. De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696

    PubMed Central  PubMed  Google Scholar 

  3. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed Central  PubMed  Google Scholar 

  5. Benno Y, Sawada K, Mitsuoka T (1984) The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 28(9):975–986

    CAS  PubMed  Google Scholar 

  6. Douglas-Escobar M, Elliott E, Neu J (2013) Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 167(4):374–379

    PubMed  Google Scholar 

  7. Metchnikoff E. Essais optimistes. 1907, Paris,: A. Maloine. 3 p. l., iii, 438 p

    Google Scholar 

  8. Bengmark S (2013) Gut microbiota, immune development and function. Pharmacol Res 69(1):87–113

    CAS  PubMed  Google Scholar 

  9. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    CAS  PubMed  Google Scholar 

  10. Diamond B et al (2011) It takes guts to grow a brain: increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays 33(8):588–591

    CAS  PubMed  Google Scholar 

  11. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  12. Desbonnet L et al (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170(4):1179–1188

    CAS  PubMed  Google Scholar 

  13. Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Savignac HM et al (2013) Prebiotic feeding elevates central, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63(8):756–764

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Messaoudi M et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    CAS  PubMed  Google Scholar 

  16. Rao AV et al (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1(1):6

    PubMed Central  PubMed  Google Scholar 

  17. Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401, 1401 e1–e4

    Google Scholar 

  18. Fouhy F et al (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3(3):203–220

    PubMed Central  PubMed  Google Scholar 

  19. Fanca-Berthon P et al (2010) Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J Pediatr Gastroenterol Nutr 51(4):402–413

    PubMed  Google Scholar 

  20. Costello EK et al (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–1262

    CAS  PubMed  Google Scholar 

  21. Relman DA (2012) The human microbiome: ecosystem resilience and health. Nutr Rev 70(Suppl 1):S2–S9

    PubMed Central  PubMed  Google Scholar 

  22. Gregory KE (2011) Microbiome aspects of perinatal and neonatal health. J Perinat Neonatal Nurs 25(2):158–162, quiz 163–164

    PubMed Central  PubMed  Google Scholar 

  23. Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98(2):229–238

    CAS  PubMed  Google Scholar 

  24. Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11(8):e1001631

    CAS  PubMed Central  PubMed  Google Scholar 

  25. DiGiulio DB et al (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 64(1):38–57

    PubMed Central  PubMed  Google Scholar 

  26. Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975

    PubMed Central  PubMed  Google Scholar 

  27. Gronlund MM et al (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37(12):1764–1772

    PubMed  Google Scholar 

  28. Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2:94

    PubMed Central  PubMed  Google Scholar 

  29. Hegde S, Munshi AK (1998) Influence of the maternal vaginal microbiota on the oral microbiota of the newborn. J Clin Pediatr Dent 22(4):317–321

    CAS  PubMed  Google Scholar 

  30. Fanaro S et al (2003) Fecal flora measurements of breastfed infants using an integrated transport and culturing system. Acta Paediatr 92(5):634–635

    CAS  PubMed  Google Scholar 

  31. Cho CE, Norman M (2013) Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 208(4):249–254

    PubMed  Google Scholar 

  32. Romero R, Korzeniewski SJ (2013) Are infants born by elective cesarean delivery without labor at risk for developing immune disorders later in life? Am J Obstet Gynecol 208(4):243–246

    PubMed  Google Scholar 

  33. Maynard CL et al (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    CAS  PubMed  Google Scholar 

  34. Barrett E et al (2013) The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed 98:F334–F340

    Google Scholar 

  35. Parfrey LW, Knight R (2012) Spatial and temporal variability of the human microbiota. Clin Microbiol Infect 18(Suppl 4):8–11

    PubMed  Google Scholar 

  36. Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lozupone CA et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–312

    Google Scholar 

  39. Marques TM et al (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21(2):149–156

    CAS  PubMed  Google Scholar 

  40. Johnson CL, Versalovic J (2012) The human microbiome and its potential importance to pediatrics. Pediatrics 129(5):950–960

    PubMed Central  PubMed  Google Scholar 

  41. Clarke G et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673

    CAS  PubMed  Google Scholar 

  42. Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667

    PubMed Central  PubMed  Google Scholar 

  44. Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    CAS  PubMed  Google Scholar 

  45. Kinross J, Nicholson JK (2012) Gut microbiota: dietary and social modulation of gut microbiota in the elderly. Nat Rev Gastroenterol Hepatol 9(10):563–564

    PubMed  Google Scholar 

  46. Grenham S et al (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94

    PubMed Central  PubMed  Google Scholar 

  47. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192

    CAS  PubMed  Google Scholar 

  48. Aziz Q, Thompson DG (1998) Brain-gut axis in health and disease. Gastroenterology 114(3):559–578

    CAS  PubMed  Google Scholar 

  49. Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12(8):453–466

    CAS  PubMed  Google Scholar 

  50. Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144(1):36–49

    PubMed  Google Scholar 

  51. Davari S et al (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240:287–296

    CAS  PubMed  Google Scholar 

  52. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314

    CAS  PubMed  Google Scholar 

  53. Bercik P (2011) The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 60(3):288–289

    PubMed  Google Scholar 

  54. Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37(9):1369–1378

    CAS  PubMed  Google Scholar 

  55. O’Mahony SM et al (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214(1):71–88

    Google Scholar 

  56. Mertz H (2002) Role of the brain and sensory pathways in gastrointestinal sensory disorders in humans. Gut 51(Suppl 1):i29–i33

    PubMed Central  PubMed  Google Scholar 

  57. Kunze WA et al (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13(8B):2261–2270

    PubMed  Google Scholar 

  58. McVey Neufeld KA et al (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):183–e88

    CAS  PubMed  Google Scholar 

  59. Browning KN, Mendelowitz D (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes?: II. Integration of afferent signaling from the viscera by the nodose ganglia. Am J Physiol Gastrointest Liver Physiol 284(1):G8–G14

    CAS  PubMed  Google Scholar 

  60. Forsythe P et al (2010) Mood and gut feelings. Brain Behav Immun 24(1):9–16

    PubMed  Google Scholar 

  61. Wang X et al (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 8(3):540–545

    PubMed  Google Scholar 

  62. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    CAS  PubMed  Google Scholar 

  63. Lyte M et al (2006) Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 89(3):350–357

    CAS  PubMed  Google Scholar 

  64. Perez-Burgos A et al (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304(2):G211–G220

    CAS  PubMed  Google Scholar 

  65. Bercik P et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Bercik P et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2):599–609, 609. e1–e3

    Google Scholar 

  67. Costedio MM, Hyman N, Mawe GM (2007) Serotonin and its role in colonic function and in gastrointestinal disorders. Dis Colon Rectum 50(3):376–388

    PubMed  Google Scholar 

  68. McLean PG, Borman RA, Lee K (2007) 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 30(1):9–13

    CAS  PubMed  Google Scholar 

  69. Cryan JF, Leonard BE (2000) 5-HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Hum Psychopharmacol 15(2):113–135

    CAS  PubMed  Google Scholar 

  70. Folks DG (2004) The interface of psychiatry and irritable bowel syndrome. Curr Psychiatry Rep 6(3):210–215

    PubMed  Google Scholar 

  71. Tack J et al (2006) A controlled crossover study of the selective serotonin reuptake inhibitor citalopram in irritable bowel syndrome. Gut 55(8):1095–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Weilburg JB (2004) An overview of SSRI and SNRI therapies for depression. Manag Care 13(6 Suppl Depression):25–33

    Google Scholar 

  73. Creed F et al (2003) The cost-effectiveness of psychotherapy and paroxetine for severe irritable bowel syndrome. Gastroenterology 124(2):303–317

    PubMed  Google Scholar 

  74. Browne CA et al (2012) An effective dietary method for chronic tryptophan depletion in two mouse strains illuminates a role for 5-HT in nesting behavior. Neuropharmacology 62(5–6):1903–1915

    CAS  PubMed  Google Scholar 

  75. Moore P et al (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23(6):601–622

    CAS  PubMed  Google Scholar 

  76. Desbonnet L et al (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    PubMed  Google Scholar 

  77. Wikoff WR et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Schwarcz R et al (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Myint AM (2012) Kynurenines: from the perspective of major psychiatric disorders. FEBS J 279(8):1375–1385

    CAS  PubMed  Google Scholar 

  80. Stone TW, Stoy N, Darlington LG (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 34(2):136–143

    CAS  PubMed  Google Scholar 

  81. Ruddick JP et al (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8(20):1–27

    PubMed  Google Scholar 

  82. Clarke G et al (2009) Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol 9:6

    PubMed Central  PubMed  Google Scholar 

  83. Clarke G et al (2009) Irritable bowel syndrome: towards biomarker identification. Trends Mol Med 15(10):478–489

    CAS  PubMed  Google Scholar 

  84. Fitzgerald P et al (2008) Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterol Motil 20(12):1291–1297

    CAS  PubMed  Google Scholar 

  85. Bercik P et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112 e1

    Google Scholar 

  86. Li G, Young KD (2013) Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159(Pt 2):402–410

    CAS  PubMed  Google Scholar 

  87. Cameron J, Doucet E (2007) Getting to the bottom of feeding behavior: who’s on top? Appl Physiol Nutr Metab 32(2):177–189

    CAS  PubMed  Google Scholar 

  88. Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132(6):2116–2130

    CAS  PubMed  Google Scholar 

  89. Rustay NR et al (2005) Galanin impairs performance on learning and memory tasks: findings from galanin transgenic and GAL-R1 knockout mice. Neuropeptides 39(3):239–243

    CAS  PubMed  Google Scholar 

  90. Wrenn CC et al (2004) Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci 19(5):1384–1396

    PubMed  Google Scholar 

  91. Giordano R et al (2006) Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-Secretagogue-receptor modulation. ScientificWorldJournal 6:1–11

    CAS  PubMed  Google Scholar 

  92. Jaszberenyi M et al (2006) Mediation of the behavioral, endocrine and thermoregulatory actions of ghrelin. Horm Behav 50(2):266–273

    CAS  PubMed  Google Scholar 

  93. Lu XY et al (2006) Leptin: a potential novel antidepressant. Proc Natl Acad Sci U S A 103(5):1593–1598

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Finger BC, Dinan TG, Cryan JF (2010) Leptin-deficient mice retain normal appetitive spatial learning yet exhibit marked increases in anxiety-related behaviors. Psychopharmacology (Berl) 210(4):559–568

    CAS  Google Scholar 

  95. Hirano S, Miyata S, Kamei J (2007) Antidepressant-like effect of leptin in streptozotocin-induced diabetic mice. Pharmacol Biochem Behav 86(1):27–31

    CAS  PubMed  Google Scholar 

  96. Lesniewska V et al (2006) Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microbiol 72(10):6533–6538

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Di Giancamillo A et al (2008) Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol 23(6):651–664

    PubMed  Google Scholar 

  98. Schele E et al (2013) The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (BDNF) in the central nervous system. Endocrinology 154(10):3643–3651

    CAS  PubMed  Google Scholar 

  99. Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46(6):261–274

    CAS  PubMed Central  PubMed  Google Scholar 

  100. O’Malley D et al (2014) Differential visceral pain sensitivity and colonic morphology in four common laboratory rat strains. Exp Physiol 99:359–367

    Google Scholar 

  101. Macpherson AJ, Uhr T (2004) Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci 1029:36–43

    CAS  PubMed  Google Scholar 

  102. Vighi G et al (2008) Allergy and the gastrointestinal system. Clin Exp Immunol 153(Suppl 1):3–6

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33(3):267–286

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am 29(2):247–264

    PubMed Central  PubMed  Google Scholar 

  105. Lotrich FE et al (2011) The role of inflammation in the pathophysiology of depression: different treatments and their effects. J Rheumatol Suppl 88:48–54

    CAS  PubMed  Google Scholar 

  106. Ratnayake U et al (2013) Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci 7:180

    PubMed Central  PubMed  Google Scholar 

  107. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726

    Google Scholar 

  108. Konieczna P et al (2012) Portrait of an immunoregulatory Bifidobacterium. Gut Microbes 3(3):261–266

    PubMed Central  PubMed  Google Scholar 

  109. Macpherson AJ, Uhr T (2002) Gut flora–mechanisms of regulation. Eur J Surg Suppl 587:53–57

    PubMed  Google Scholar 

  110. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    CAS  PubMed  Google Scholar 

  111. Kimura I et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    PubMed Central  PubMed  Google Scholar 

  112. Steliou K et al (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1(4):192–198

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Schroeder FA et al (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62(1):55–64

    CAS  PubMed  Google Scholar 

  114. MacFabe DF et al (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176(1):149–169

    CAS  PubMed  Google Scholar 

  115. MacFabe DF et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54

    CAS  PubMed  Google Scholar 

  116. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behavior – epigenetic regulation of the gut-brain axis. Genes Brain Behav 13(1):69–86

    CAS  PubMed  Google Scholar 

  117. Neufeld KM et al (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3):255–264, e119

    Google Scholar 

  118. Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108(7):3047–3052

    PubMed  Google Scholar 

  119. Nishino R et al (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–528

    CAS  PubMed  Google Scholar 

  120. Gulati AS et al (2012) Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition. PLoS One 7(2):e32403

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Olivares M, Laparra JM, Sanz Y (2013) Host genotype, intestinal microbiota and inflammatory disorders. Br J Nutr 109(Suppl 2):S76–S80

    CAS  PubMed  Google Scholar 

  122. Desbonnet L et al (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148

    Google Scholar 

  123. Gareau MG et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317

    PubMed  Google Scholar 

  124. Sudo N et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lakhan SE, Caro M, Hadzimichalis N (2013) NMDA receptor activity in neuropsychiatric disorders. Front Psychiatry 4:52

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Rea MC et al (2011) Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A 108(Suppl 1):4639–4644

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ, Mitchell EA; the ISAAC Phase Three Study Group. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2013 Nov 21

    Google Scholar 

  128. Verdu EF et al (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55(2):182–190

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Fouhy F et al (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56(11):5811–5820

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Ohland CL et al (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38:1738–1747

    Google Scholar 

  131. Matthews DM, Jenks SM (2013) Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Processes 96:27–35

    Google Scholar 

  132. Hsiao EY et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463

    Google Scholar 

  133. Rousseaux C et al (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13(1):35–37

    CAS  PubMed  Google Scholar 

  134. McKernan DP et al (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 22(9):1029–1035, e268

    Google Scholar 

  135. Johnson AC, Greenwood-Van Meerveld B, McRorie J (2011) Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig Dis Sci 56(11):3179–3186

    PubMed  Google Scholar 

  136. Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61(3):355–361

    CAS  PubMed  Google Scholar 

  137. Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401

    Google Scholar 

  138. Yang J et al (2007) Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro. Biol Reprod 76(1):36–42

    CAS  PubMed  Google Scholar 

  139. Petschow B et al (2013) Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci 1306(1):1–17

    CAS  PubMed  Google Scholar 

  140. Saulnier DM et al (2013) The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4(1):17–27

    PubMed Central  PubMed  Google Scholar 

  141. Drakoularakou A et al (2010) A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr 64(2):146–152

    CAS  PubMed  Google Scholar 

  142. van Vlies N et al (2012) Effects of short-chain galacto- and long-chain fructo-oligosaccharides on systemic and local immune status during pregnancy. J Reprod Immunol 94(2):161–168

    PubMed  Google Scholar 

  143. Vulevic J et al (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88(5):1438–1446

    CAS  PubMed  Google Scholar 

  144. Hornig M (2013) The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol 25:488–795

    Google Scholar 

  145. McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci U S A 109(Suppl 2):17180–17185

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Nutt DJ, Malizia AL (2004) Structural and functional brain changes in posttraumatic stress disorder. J Clin Psychiatry 65(Suppl 1):11–17

    PubMed  Google Scholar 

  147. Lupien SJ et al (2009) Effects of stress throughout the lifespan on the brain, behavior and cognition. Nat Rev Neurosci 10(6):434–445

    CAS  PubMed  Google Scholar 

  148. Bravo JA et al (2012) Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12(6):667–672

    CAS  PubMed  Google Scholar 

  149. Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I – autointoxication revisited. Gut Pathog 5(1):5

    PubMed Central  PubMed  Google Scholar 

  150. Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III – convergence toward clinical trials. Gut Pathog 5(1):4

    PubMed Central  PubMed  Google Scholar 

  151. Scott LV, Clarke G, Dinan TG (2013) The brain-gut axis: a target for treating stress-related disorders. In: Halaris A, Leonard BE (eds) Inflammation in Psychiatry, vol 28. Karger, Basel

    Google Scholar 

  152. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9(3):591–598

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Timoveyev L et al (2002) Stability to sound stress and changeability in intestinal microflora. Eur Psychiatry 17(Suppl 1):200

    Google Scholar 

  154. Suzuki K et al (1983) Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nihon Juigaku Zasshi 45(3):331–338

    CAS  PubMed  Google Scholar 

  155. Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35(2):146–155

    CAS  PubMed  Google Scholar 

  156. Garcia-Rodenas CL et al (2006) Nutritional approach to restore impaired intestinal barrier function and growth after neonatal stress in rats. J Pediatr Gastroenterol Nutr 43(1):16–24

    PubMed  Google Scholar 

  157. O’Mahony SM et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65(3):263–267

    PubMed  Google Scholar 

  158. Bailey MT et al (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25(3):397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Collins SM, Bercik P (2013) Gut microbiota: intestinal bacteria influence brain activity in healthy humans. Nat Rev Gastroenterol Hepatol 10:326–327

    Google Scholar 

  160. Barrett E et al (2012) Bifidobacterium breve with alpha-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome. PLoS One 7(11):e48159

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Wall R et al (2010) Impact of administered Bifidobacterium on murine host fatty acid composition. Lipids 45(5):429–436

    CAS  PubMed  Google Scholar 

  162. Wall R et al (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nutr 95(5):1278–1287

    CAS  PubMed  Google Scholar 

  163. Mocking RJ et al (2013) Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression. Psychoneuroendocrinology 38:1607–1617

    Google Scholar 

  164. Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29(3):287–291

    CAS  PubMed  Google Scholar 

  165. Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8(4):274–281

    CAS  PubMed  Google Scholar 

  166. Ait-Belgnaoui A et al (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895

    CAS  PubMed  Google Scholar 

  167. Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry 157(8):1243–1251

    CAS  PubMed  Google Scholar 

  168. Caspi A et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    CAS  PubMed  Google Scholar 

  169. Krogius-Kurikka L et al (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol 9:95

    PubMed Central  PubMed  Google Scholar 

  170. Tana C et al (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22(5):512–519, e114-5

    CAS  PubMed  Google Scholar 

  171. Jeffery IB et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006

    PubMed  Google Scholar 

  172. Gareau MG et al (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Craft N, Li H (2013) Response to the commentaries on the paper: Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 133:2295–2297

    Google Scholar 

  174. Myint AM et al (2013) Tryptophan metabolism and immunogenetics in major depression: a role for interferon-gamma gene. Brain Behav Immun 31:128–133

    CAS  PubMed  Google Scholar 

  175. Tillisch K, Mayer EA (2005) Pain perception in irritable bowel syndrome. CNS Spectr 10(11):877–882

    PubMed  Google Scholar 

  176. Davis KD et al (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70(2):153–154

    CAS  PubMed  Google Scholar 

  177. Ellingson BM et al (2013) Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 154(9):1528–1541

    PubMed  Google Scholar 

  178. Zucchelli M et al (2011) Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 60(12):1671–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Salonen A, de Vos WM, Palva A (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156(Pt 11):3205–3215

    CAS  PubMed  Google Scholar 

  180. Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9(9):2125–2136

    PubMed  Google Scholar 

  181. Codling C et al (2010) A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig Dis Sci 55(2):392–397

    PubMed  Google Scholar 

  182. Clarke G et al (2012) Review article: probiotics for the treatment of irritable bowel syndrome–focus on lactic acid bacteria. Aliment Pharmacol Ther 35(4):403–413

    CAS  PubMed  Google Scholar 

  183. Moayyedi P et al (2010) The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59(3):325–332

    CAS  PubMed  Google Scholar 

  184. Parkes GC, Sanderson JD, Whelan K (2010) Treating irritable bowel syndrome with probiotics: the evidence. Proc Nutr Soc 69(2):187–194

    CAS  PubMed  Google Scholar 

  185. Pimentel M, Lezcano S (2007) Irritable bowel syndrome: bacterial overgrowth—what’s known and what to do. Curr Treat Options Gastroenterol 10(4):328–337

    PubMed  Google Scholar 

  186. Happe F et al (2006) Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain Cogn 61(1):25–39

    PubMed  Google Scholar 

  187. Grabrucker AM (2012) Environmental factors in autism. Front Psychiatry 3:118

    PubMed Central  PubMed  Google Scholar 

  188. Coury DL et al (2012) Use of psychotropic medication in children and adolescents with autism spectrum disorders. Pediatrics 130(Suppl 2):S69–S76

    PubMed  Google Scholar 

  189. Buie T et al (2010) Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics 125(Suppl 1):S19–S29

    PubMed  Google Scholar 

  190. de Theije CG et al (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206

    Google Scholar 

  191. Mulle JG, Sharp WG, Cubells JF (2013) The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep 15(2):337

    PubMed Central  PubMed  Google Scholar 

  192. Macfabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23

    Google Scholar 

  193. Kandel E (2012) The biological mind and art. A conversation with Eric Kandel, MD. Interview by Sue Pondrom. Ann Neurol 72(5):A7–A8

    PubMed  Google Scholar 

  194. Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Hedges DW, Woon FL (2011) Early-life stress and cognitive outcome. Psychopharmacology (Berl) 214(1):121–130

    CAS  Google Scholar 

  196. Kennedy PJ et al (2012) Gut memories: towards a cognitive neurobiology of irritable bowel syndrome. Neurosci Biobehav Rev 36(1):310–340

    PubMed  Google Scholar 

  197. Kennedy PJ et al (2013) Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol Med 1–14

    Google Scholar 

  198. Fombonne E (2005) Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 66(Suppl 10):3–8

    PubMed  Google Scholar 

  199. Nolen-Hoeksema S, Larson J, Grayson C (1999) Explaining the gender difference in depressive symptoms. J Pers Soc Psychol 77(5):1061–1072

    CAS  PubMed  Google Scholar 

  200. Bethea TC, Sikich L (2007) Early pharmacological treatment of autism: a rationale for developmental treatment. Biol Psychiatry 61(4):521–537

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9(2):88–96

    CAS  Google Scholar 

  202. Damman CJ et al (2012) The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 107(10):1452–1459

    PubMed  Google Scholar 

  203. van Nood E et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    PubMed  Google Scholar 

  204. Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RP (2008) Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 22(3):354–366

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65(1):63–68

    CAS  PubMed  Google Scholar 

  206. Arseneault-Bréard J, Rondeau I, Gilbert K, Girard SA, Tompkins TA, Godbout R, Rousseau G (2012) Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 107(12):1793–1799

    PubMed  Google Scholar 

  207. Gilbert K, Arseneault-Bréard J, Flores Monaco F, Beaudoin A, Bah TM, Tompkins TA, Godbout R, Rousseau G (2013) Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br J Nutr 109(1):50–56

    CAS  PubMed  Google Scholar 

  208. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M (2009) Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96(4–5):557–567

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Cryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Borre, Y.E., Moloney, R.D., Clarke, G., Dinan, T.G., Cryan, J.F. (2014). The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_17

Download citation

Publish with us

Policies and ethics