Advertisement

Bacterial Neuroactive Compounds Produced by Psychobiotics

  • Rebecca Wall
  • John F. Cryan
  • R. Paul Ross
  • Gerald F. Fitzgerald
  • Timothy G. Dinan
  • Catherine Stanton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 817)

Abstract

We recently coined the phrase ‘psychobiotics’ to describe an emerging class of probiotics of relevance to psychiatry [Dinan et al., Biol Psychiatry 2013;74(10):720–726]. Such “mind-altering” probiotics may act via their ability to produce various biologically active compounds, such as peptides and mediators normally associated with mammalian neurotransmission. Several molecules with neuroactive functions such as gamma-aminobutyric acid (GABA), serotonin, catecholamines and acetylcholine have been reported to be microbially-derived, many of which have been isolated from bacteria within the human gut. Secreted neurotransmitters from bacteria in the intestinal lumen may induce epithelial cells to release molecules that in turn modulate neural signalling within the enteric nervous system and consequently signal brain function and behaviour of the host. Consequently, neurochemical containing/producing probiotic bacteria may be viewed as delivery vehicles for neuroactive compounds and as such, probiotic bacteria may possibly have the potential as a therapeutic strategy in the prevention and/or treatment of certain neurological and neurophysiological conditions.

Keywords

Autism Spectrum Disorder Conjugate Linoleic Acid Short Chain Fatty Acid Enteric Nervous System Probiotic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

5-HT

5-Hydroxytryptamine

AA

Arachidonic acid

ASD

Autism spectrum disorders

CLA

Conjugated linoleic acid

CNS

Central nervous system

DHA

Docosahexaenoic acid

GABA

Gamma-aminobutyric acid

GAD

Glutamate decarboxylase

GF

Germ-free

GIT

Gastrointestinal tract

IPA

Indole-3-propionic acid

LAB

Lactic acid bacteria

LC-PUFA

Long-chain fatty acid

PPAR γ

Peroxisome proliferator-activated receptor gamma

SCFA

Short chain fatty acid

TNF

Tumor necrosis factor

Notes

Acknowledgements

This work was supported by the Science Foundation of Ireland—funded Centre for Science, Engineering and Technology, the Alimentary Pharmabiotic Centre.

References

  1. 1.
    Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726PubMedGoogle Scholar
  2. 2.
    Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742PubMedGoogle Scholar
  3. 3.
    Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052PubMedCentralGoogle Scholar
  4. 4.
    Neufeld K, Kang N, Bienenstock J, Foster J (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264PubMedGoogle Scholar
  5. 5.
    Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314PubMedGoogle Scholar
  6. 6.
    O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214:71–88Google Scholar
  7. 7.
    Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behaviour. Neurogastroenterol Motil 23:187–192PubMedGoogle Scholar
  8. 8.
    FAO/WHO (2001) Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf
  9. 9.
    Lyte M (2011) Probiotics function mechanistically as delivery vehicles of neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33(8):574–581PubMedGoogle Scholar
  10. 10.
    Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Amino butyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417PubMedGoogle Scholar
  11. 11.
    Thomas CA, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J (2012) Histamine derived from probiotic Lactobacillus reuteri suppress TNF via modulation of PKA and ERK signalling. PLoS One 7(2):e31951PubMedCentralPubMedGoogle Scholar
  12. 12.
    Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209PubMedGoogle Scholar
  13. 13.
    Marquardt P, Spitznagel G (1959) Bakterielle Acetylcholine Bildung in Kunstlichen Nahrboden. Arzneimittelforschung 9:456–465PubMedGoogle Scholar
  14. 14.
    Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms using of high performance liquid chromatography. Dokl Biochem 372:115–117 (in Russian issue 840–842)Google Scholar
  15. 15.
    Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70:55–69PubMedGoogle Scholar
  16. 16.
    Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–e371PubMedGoogle Scholar
  17. 17.
    Özogul F (2011) Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogens. Int J Food Sci Technol 46(3):478–484Google Scholar
  18. 18.
    Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52Google Scholar
  19. 19.
    Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60PubMedGoogle Scholar
  20. 20.
    Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145PubMedGoogle Scholar
  21. 21.
    Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337PubMedCentralPubMedGoogle Scholar
  22. 22.
    Rosberg-Cody E, Ross RP, Hussey S, Ryan CA, Murphy BP, Fitzgerald GF, Devery R, Stanton C (2004) Mining the microbiota of the neonatal gastrointestinal tract for CLA-producing bifidobacteria. Appl Environ Microbiol 70:4635–4641PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120PubMedCentralPubMedGoogle Scholar
  24. 24.
    Boontham P, Robins A, Chandran P, Pritchard D, Camara M, Williams P, Chuthapisith S, McKechnie A, Rowlands BJ, Eremin O (2008) Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin Sci (Lond) 115:343–351Google Scholar
  25. 25.
    Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42PubMedCentralPubMedGoogle Scholar
  26. 26.
    Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103:10420–10425PubMedCentralPubMedGoogle Scholar
  27. 27.
    Schousboe A, Waagepetersen HS (2007) GABA: homeostatic and pharmacological aspects. In: Tepper JM, Abercrombie ED, Bolam JP (eds) Gaba and the basal ganglia: from molecules to systems. Elsevier Science, Amsterdam, pp 9–19Google Scholar
  28. 28.
    Bienenstock J, Forsythe P, Karimi K, Kunze W (2010) Neuroimmune aspects of food intake. Int Dairy J 20:253–258Google Scholar
  29. 29.
    Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285PubMedGoogle Scholar
  30. 30.
    Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gammaaminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364PubMedCentralPubMedGoogle Scholar
  31. 31.
    Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gammaaminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hiraga K, Ueno YH, Oda KH (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72:1299–1306PubMedGoogle Scholar
  33. 33.
    Park KB, Oh SH (2006) Isolation and characterization of Lactobacillus buchneri strains with high gamma-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol 15:86–90Google Scholar
  34. 34.
    Rizzello CG, Cassone A, Di Cagno R, Gobbetti M (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J Agric Food Chem 56:6936–6943PubMedGoogle Scholar
  35. 35.
    Komatsuzaki N, Shima J, Kawamoto S, Momose H (2005) Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504Google Scholar
  36. 36.
    Li HX, Gao DD, Cao YS, Xu HY (2008) A high gamma-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann Microbiol 58:649–653Google Scholar
  37. 37.
    Ko CY, Victor Lin HT, Tsai GJ (2013) Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem 48(4):559–568Google Scholar
  38. 38.
    Krantis A (2000) GABA in the mammalian enteric nervous system. News Physiol Sci 15:284–290PubMedGoogle Scholar
  39. 39.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienestock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055PubMedCentralPubMedGoogle Scholar
  40. 40.
    Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715PubMedGoogle Scholar
  41. 41.
    Wong CG, Bottiglieri T, Snead OC (2003) GABA, gammahydroxybutyric acid, and neurological disease. Ann Neurol 54:S3–S12PubMedGoogle Scholar
  42. 42.
    Bjurstom H, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S, Issazadeh-Navikas S, Birnir B (2008) GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 205:44–50PubMedGoogle Scholar
  43. 43.
    Page AJ, O’Donnell TA, Blackshaw LA (2006) Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 137:627–636PubMedGoogle Scholar
  44. 44.
    Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48PubMedGoogle Scholar
  45. 45.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703PubMedCentralPubMedGoogle Scholar
  46. 46.
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673PubMedGoogle Scholar
  47. 47.
    Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174PubMedGoogle Scholar
  48. 48.
    Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16PubMedGoogle Scholar
  49. 49.
    Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Mikrobiol 45(5):550–554PubMedGoogle Scholar
  50. 50.
    Kobayashi K (2001) Role of catecholamine signalling in brain and nervous system functions: new insights from mouse molecular genetic study. J Investig Dermatol Symp Proc 6:115–121PubMedGoogle Scholar
  51. 51.
    Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12:811–821PubMedGoogle Scholar
  52. 52.
    Robertson IH (2013) A noradrenergic theory of cognitive reserve: implications for Alzheimers disease. Neurobiol Aging 34(1):298–308PubMedGoogle Scholar
  53. 53.
    Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63PubMedGoogle Scholar
  54. 54.
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295PubMedGoogle Scholar
  55. 55.
    Kruk ZL, Pycock CJ (1990) Neurotransmitters and drugs. Chapman and Hall, New YorkGoogle Scholar
  56. 56.
    Tucˇek S (1988) Choline acetyltransferase and the synthesis of acetylcholine. In: Whittaker VP (ed) Handbook of experimental pharmacology. The cholinergic synapse, vol 86. Springer, Berlin, pp 125–165Google Scholar
  57. 57.
    Tucˇek S (1882) The synthesis of acetylcholine in skeletal muscles of the rat. J Physiol 322:53–69Google Scholar
  58. 58.
    Wessler I, Kirkpatrick CJ, Racke K (1999) Cholinergic “pitfall”: acetylcholine, a universal cell molecule widely distributed in biological systems: expression and function in humans. Clin Exp Pharmacol Physiol 26:198–205PubMedGoogle Scholar
  59. 59.
    Girvin GT, Stevenson JW (1954) Cell free “choline acetylase” from Lactobacillus plantarum. Can J Biochem Physiol 32:131–146PubMedGoogle Scholar
  60. 60.
    Rowatt E (1948) The relation of pantothenic acid to acetylcholine formation by a strain of Lactobacillus plantarum. J Gen Microbiol 2:25–30Google Scholar
  61. 61.
    Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756PubMedGoogle Scholar
  62. 62.
    Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14:472–487PubMedGoogle Scholar
  63. 63.
    Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199:183–189PubMedGoogle Scholar
  64. 64.
    Airaksinen MS, Paetau A, Paljarvi L, Reinikainen K, Riekkinen P, Suomalainen R, Panula P (1991) Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44:465–481PubMedGoogle Scholar
  65. 65.
    Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17PubMedGoogle Scholar
  66. 66.
    Landete JM, de las Rivas B, Marcobal A, Munoz R (2008) Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr 48:697–714Google Scholar
  67. 67.
    Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine producing lactic acid bacteria: early detection, frequency and distribution. Am J Enol Vitic 49:199–204Google Scholar
  68. 68.
    Shalaby AR (1996) Significance of biogenic amines in food safety and human health. Food Res Int 29:675–690Google Scholar
  69. 69.
    Morita I, Kawamoto M, Yoshida H (1992) Difference in the concentration of tryptophan metabolites between maternal and umbilical foetal blood. J Chromatogr 576:334–339PubMedGoogle Scholar
  70. 70.
    Young S, Anderson GM, Gauthier S, Purdy WC (1980) The origin of indoleacetic and indolepropionic acid in rat and human cerebrospinal fluid. J Neurochem 34:1087–1092PubMedGoogle Scholar
  71. 71.
    Karbownik M, Reiter RJ, Garcia JJ, Cabrera J, Burkhardt S, Osuna C, Lewinski A (2001) Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction. J Cell Biochem 81:507–513PubMedGoogle Scholar
  72. 72.
    Bendheim PE, Poeggeler B, Neria E, Ziv V, Pappolla MA, Chain DG (2002) Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J Mol Neurosci 19:213–217PubMedGoogle Scholar
  73. 73.
    Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, Jeong YG, Lee YL, Kim YM, Kwon YG, Won MH (2009) Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 87:2126–2137PubMedGoogle Scholar
  74. 74.
    Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (1999) Potent neuroprotective properties against the Alzheimer β-amyloid by an exogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 274(31):21937–21942PubMedGoogle Scholar
  75. 75.
    Jellet JJ, Forrest TP, Macdonald IA, Marrie TJ, Holdeman LV (1980) Production of indole-3-propionic acid and 3-(p-hydroxyphenyl) propionic acid by Clostridium sporogenes: a convenient thin-layer chromatography detection system. Can J Microbiol 26(4):448–453PubMedGoogle Scholar
  76. 76.
    Smith EA, Macfarlane GT (1997) Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33:180–188PubMedGoogle Scholar
  77. 77.
    Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H (2009) Review: tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2:s9–s22Google Scholar
  78. 78.
    Cummings JH (1981) Short chain fatty-acids in the human-colon. Gut 22:763–779PubMedCentralPubMedGoogle Scholar
  79. 79.
    Cummings JH (1995) In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition, physiology and health. CRC, Boca Raton, pp 101–130Google Scholar
  80. 80.
    Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064PubMedGoogle Scholar
  81. 81.
    Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319PubMedGoogle Scholar
  82. 82.
    Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101:1045–1050PubMedCentralPubMedGoogle Scholar
  83. 83.
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286PubMedCentralPubMedGoogle Scholar
  84. 84.
    Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149(9):4519–4526PubMedGoogle Scholar
  85. 85.
    Hong Y, Nishimura HY, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K, Roh SG, Sasaki S (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099PubMedGoogle Scholar
  86. 86.
    Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagizawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772PubMedCentralPubMedGoogle Scholar
  87. 87.
    Karuri AR, Dobrowsky E, Tannock IF (1993) Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer 68:1080–1087PubMedCentralPubMedGoogle Scholar
  88. 88.
    Maurer MH, Canis M, Kuschinsky W, Duelli R (2004) Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 355:105–108PubMedGoogle Scholar
  89. 89.
    Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688PubMedGoogle Scholar
  90. 90.
    Peinado A, Yuste R, Katz LC (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114PubMedGoogle Scholar
  91. 91.
    Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiya H (1998) Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 22:331–337PubMedGoogle Scholar
  92. 92.
    DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF (2005) Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 142:28–38PubMedGoogle Scholar
  93. 93.
    Shah P, Nankova BB, Parab S, La Gamma EF (2006) Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 1107:13–23PubMedGoogle Scholar
  94. 94.
    El-Ansary AK, Ben BA, Kotb M (2012) Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 9:74PubMedCentralPubMedGoogle Scholar
  95. 95.
    Mitsui R, Ono S, Karaki S, Kuwahara A (2005) Neural and nonneural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol Motil 17:585–594PubMedGoogle Scholar
  96. 96.
    Schultz SR, MacFabe DF, Martin S, Jackson J, Taylor R, Boon F, Ossenkopp KP, Caiin DP (2009) Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 200:33–41Google Scholar
  97. 97.
    Schultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R, Cain DP (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 54:901–911Google Scholar
  98. 98.
    MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffmann JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176:149–169PubMedGoogle Scholar
  99. 99.
    Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, MacFabe DF (2012) The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorder. J Neuroinflammation 9:153PubMedCentralPubMedGoogle Scholar
  100. 100.
    Finegold SM, Dowd SE, Gontcharova V, Liu CX, Henley KE, Wolcott RD (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16:444–453PubMedGoogle Scholar
  101. 101.
    Song Y, Liu C, Finegold SM (2004) Real-time PCR quantification of clostridia in feces of autistic children. Appl Environ Microbiol 70:6459–6465PubMedCentralPubMedGoogle Scholar
  102. 102.
    Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69(5):245–258PubMedGoogle Scholar
  103. 103.
    Kruh J, Defer N, Tichonicky L (1995) In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short chain fatty acids. Cambridge University Press, Cambridge, pp 275–288Google Scholar
  104. 104.
    Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant- like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62:55–64PubMedGoogle Scholar
  105. 105.
    Haag M (2003) Essential fatty acids and the brain. Can J Psychiatry 48(3):195–203PubMedGoogle Scholar
  106. 106.
    Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94PubMedGoogle Scholar
  107. 107.
    Sinn N, Milte C, Howe PRC (2010) Oiling the brain: a review of randomised controlled trials of omega-3 fatty acids in psychopathology across the lifespan. Nutrients 2(2):128–170PubMedCentralPubMedGoogle Scholar
  108. 108.
    O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544PubMedGoogle Scholar
  109. 109.
    Heinrichs SC (2010) Dietary ω-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 54:447–456PubMedGoogle Scholar
  110. 110.
    Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75:259–269PubMedGoogle Scholar
  111. 111.
    Wall R, Marques TM, O’Sullivan O, Ross RP, Shanahan F, Quigley EM, Dinan TG, Kiely B, Fitzgerald GF, Cotter PD, Fouhy F, Stanton C (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nutr 95(5):1278–1287PubMedGoogle Scholar
  112. 112.
    Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12:277–288PubMedGoogle Scholar
  113. 113.
    Hoppu U, Isolauri E, Laakso P, Matomäki J, Laitinen K (2012) Probiotics and dietary counselling targeting maternal dietary fat intake modifies breast milk fatty acids and cytokines. Eur J Nutr 51(2):211–219PubMedGoogle Scholar
  114. 114.
    Kaplas N, Isolauri E, Lampi AM, Ojala T, Laitinen K (2007) Dietary counselling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids. Lipids 45:865–870Google Scholar
  115. 115.
    Kankaanpaa PE, Yang B, Kallio HP, Isolauri E, Salminen SJ (2002) Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 13:364–369PubMedGoogle Scholar
  116. 116.
    Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181PubMedCentralPubMedGoogle Scholar
  117. 117.
    Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241:1350–1354PubMedGoogle Scholar
  118. 118.
    Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2004) Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr 79:1118–1125PubMedGoogle Scholar
  119. 119.
    Ip MM, Masso-Welch PA, Ip C (2003) Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. J Mammary Gland Biol Neoplasia 8:103–118PubMedGoogle Scholar
  120. 120.
    Bassaganya-Riera J, Hontecillas R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21:451–459PubMedGoogle Scholar
  121. 121.
    Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477SPubMedGoogle Scholar
  122. 122.
    Taylor CG, Zahradka P (2004) Dietary conjugated linoleic acid and insulin sensitivity and resistance in rodent models. Am J Clin Nutr 79:1164S–1168SPubMedGoogle Scholar
  123. 123.
    Clement L, Poirier H, Niot I, Bocher V, Guerro-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409PubMedGoogle Scholar
  124. 124.
    Fa M, Diana A, Carta G, Cordeddu L, Melis MP, Murru E, Sogos V, Banni S (2005) Incorporation and metabolism of c9, t11 and t10, c12 conjugated linoleic acid (CLA) isomers in rat brain. Biochim Biophys Acta 1736:61–66PubMedGoogle Scholar
  125. 125.
    Nakanishi T, Koutoku T, Kawahara S, Murai A, Furuse M (2003) Dietary conjugated linoleic acid reduces cerebral prostaglandin E2 in mice. Neurosci Lett 341:135–138PubMedGoogle Scholar
  126. 126.
    Sikorski AM, Hebert N, Swain RA (2008) Conjugated linoleic acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res 1213:35–40PubMedGoogle Scholar
  127. 127.
    Hunt WT, Kamboj A, Anderson HD, Anderson CM (2010) Protection of cortical neurons from excitotoxicity by conjugated linoleic acid. J Neurochem 115:123–130PubMedGoogle Scholar
  128. 128.
    Chin SF, Storkson JM, Liu W, Albright KJ, Pariza MW (1994) Conjugated linoleic acid (9,11- and 10,12-octadecadienoic acid) is produced in conventional but not germ free rats fed linoleic acid. J Nutr 124:694–701PubMedGoogle Scholar
  129. 129.
    Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. JAOCS 79:159–163Google Scholar
  130. 130.
    Lin TY, Lin CW, Wang YJ (2002) Linoleic acid isomerase activity in enzyme extracts from Lactobacillus acidophilus and Propionibacterium freudenreichii ssp. shermanii. J Food Sci 67:1502–1505Google Scholar
  131. 131.
    Macouzet M, Robert N, Lee BH (2010) Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus. Appl Microbiol Biotechnol 87:1737–1742PubMedGoogle Scholar
  132. 132.
    Macouzet M, Lee BH, Robert N (2010) Genetic and structural comparison of linoleate isomerases from selected food-grade bacteria. J Appl Microbiol 109:2128–2134PubMedGoogle Scholar
  133. 133.
    Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89(5):1393–1401PubMedGoogle Scholar
  134. 134.
    Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, Jobin C, Arthur JC, Corl BA, Vogel H, Storr M, Hontecillas R (2012) Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. PLoS One 7(2):e31238PubMedCentralPubMedGoogle Scholar
  135. 135.
    Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobestity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103:1140–1146PubMedGoogle Scholar
  136. 136.
    Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761:736–744PubMedGoogle Scholar
  137. 137.
    Druart C, Neyrinck AM, Dewulf EM, De Backer FC, Possemiers S, Van De Wiele T, Moens F, De Vuyst L, Cani PD, Larondelle Y, Delzenne NM (2013) Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. Br J Nutr 110:998–1011PubMedGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Rebecca Wall
    • 1
  • John F. Cryan
    • 2
  • R. Paul Ross
    • 1
  • Gerald F. Fitzgerald
    • 3
  • Timothy G. Dinan
    • 4
  • Catherine Stanton
    • 1
  1. 1.Alimentary Pharmabiotic Centre, Teagasc Moorepark Food Research CentreCorkIreland
  2. 2.Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
  3. 3.Microbiology and Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland
  4. 4.University College CorkCorkIreland

Personalised recommendations