Biochemistry and Molecular Biology of Food Allergens

  • Tanja Ćirković Veličković
  • Marija Gavrović-Jankulović
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

A food allergen has the ability to first elicit an immunoglobulin E (IgE) response, and then, on subsequent exposures, to elicit a clinical response to the same or similar protein. However, despite increasing knowledge of the structure and amino acid sequences of the identified allergens, only a few biochemical characteristics can be associated with food allergens, such as the biochemical characteristics that allow a food protein to survive the extremes of food processing, escape the digestive enzymes of the human gastrointestinal tract, and interact with the immune system. Food allergen characteristics include abundance of the protein in the food, presence of multiple linear IgE binding epitopes, and resistance of the protein to digestion and processing.

Most plant and animal food allergens belong to only several protein families. It seems likely that the bulk of protein families that include allergenic members have already been discovered. However, belonging to one of a limited number of protein families is not sufficient to determine allergenic activity of a given protein. It seems that the factors important in sensitization of an atopic individual with any given allergen are: (1) the genetic predisposition of the exposed person, (2) the structure of the allergen, and (3) the biochemical and physicochemical properties of the allergen.

Various factors may facilitate the presentation of food allergens to the immune system (primarily through the gut) and these include stability enhanced by binding various types of ligands, large number of disulfide bonds, oligomerization or aggregation, glycosylation, and potential interaction with cell membranes or lipid structures. Some biochemical characteristics associated with food allergens, such as the presence of multiple, linear IgE-binding epitopes and the resistance of the protein to digestion and processing, seem to predominate among food allergens, more so than common structural features.

Abbreviations

3D

Three-dimensional structure

ABPs

Auxin-binding proteins

ALA

Α-lactalbumin

BAT

Basophil activation test

BLG

β-lactoglobulin

CD

Clusted of differentiation

CRD

Component-resolved diagnosis

CSA

Chicken serum albumin

DBPCFC

Double-blind placebo-controlled food challenge

EAST

Enzyme Allergo-Sorbent Testing

ELISA

Ezyme-Linked Immunosorbent Assay

GLPs

Germins and germin-like proteins

ISAC

Immuno Solid-phase Allergen Chip

nsLTPs

Nonspecific lipid transfer proteins

OAS

Oral allergy syndrome

PR

Pathogenesis related

RAST

Radioallergosorbent test

SPT

Skin prick tests

VTG

Vitellogenin

WHO/IUIS

World Health Organization/International Union of Immunological Societies

YGP

Yolk glycoprotein

References

  1. 1.
    Hoffmann-Sommergruber K, Mills ENC. Food allergen protein families and their structural characteristics and application in componet-resolved diagnosis: new data from the EuroPrevall project. Anal Bioanal Chem. 2009, 395(1):25–35.Google Scholar
  2. 2.
    Sampson HA: Anaphylaxis and emergency treatment. Pediatrics 2003, 111(6 Pt 3):1601–1608.Google Scholar
  3. 3.
    Fleischer DM, Byrne AM, Malka-Rais J, Burks AW. (2010). How do we know when peanut and tree nut allergy have resolved, and how do we keep it resolved? Clin. Exp. Allergy 2010, 40(9):1303–1311.Google Scholar
  4. 4.
    van Wijk F, Nierkens S, Hassing I, Feijen M, Koppelman SJ, de Jong GA, Pieters R, Knippels LM. The effect of the food matrix on in vivo immune responses to purified peanut allergens. Toxicol Sci 2005, 86(2):333–41.Google Scholar
  5. 5.
    Van Wijk F, Nierkens S, de Jong W, Wehrens EJ, Boon L, van Kooten P, Knippels LM, Pieters R. The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins. J Immunol 2007, 178(11):6894–900.Google Scholar
  6. 6.
    Schouten B, van Esch BC, Hofman GA, van den Elsen LW, Willemsen LE, Garssen J. Acute allergic skin reactions and intestinal contractility changes in mice orally sensitized against casein or whey. Int Arch Allergy Immunol 2008, 147(2):125–34.Google Scholar
  7. 7.
    Hattori M, Nagasawa K, Ohgata K, Sone N, Fukuda A, Matsuda H, Takahashi K. Reduced immunogenicity of beta-lactoglobulin by conjugation with carboxymethyl dextran. Bioconjugate Chem. 2000, 11(1):84–93.Google Scholar
  8. 8.
    Kobayashi K, Hirano A, Ohta A, Yoshida T, Takahashi K, Hattori M. Reduced immunogenicity of beta-lactoglobulin by conjugation with carboxymethyl dextran differing in molecular weight. J Agric Food Chem. 2001, 49(2):823–831.Google Scholar
  9. 9.
    Kobayashi K, Yoshida T, Takahashi K, Hattori M. Modulation of the T cell response to beta-lactoglobulin by conjugation with carboxymethyl dextran. Bioconjugate Chem. 2003, 14(1):168–176.Google Scholar
  10. 10.
    Nowak-Wegrzyn A, Bencharitiwong R, Schwarz J, David G, Eggleston P, Gergen PJ, Liu AH, Pongracic JA, Sarpong S, Sampson HA. Mediator Release Assay for Assessment of Biological Potency of German Cockroach Allergen Extracts. J Allergy Clin Immunol. 2009, 123(4): 949–955.Google Scholar
  11. 11.
    Volgel L, Luttkopf D, Hatahet L, Haustein D, Vieths S. Development of a functional in vitro assay as a novel tool for the standardization of allergen extracts in the human system. Allergy 2005, 60(8):1021–1028.Google Scholar
  12. 12.
    Mita H, Yasueda H, Akiyama K. Affinity of IgE antibody to antigen influences allergen-induced histamine release. Clin. Exp. Allergy 2000, 30(11):1583–1589.Google Scholar
  13. 13.
    Torigoe C, Inman JK, Metzger H. An unusual mechanism for ligand antagonism. Science 1998, 281(5376):568–572.Google Scholar
  14. 14.
    Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constrains determine secretory signals induced by aggregation of IgE receptors on mast cells. EMBO J 1988, 7(13):4101–4109.Google Scholar
  15. 15.
    Johanson SG. Anti-IgE antibodies in human serum. J Allergy Clin Immunol 1986, 77(4):555–557.Google Scholar
  16. 16.
    Jarzab J, Gawlik R. Immune complexes IgE/IgG in airborne allergy: increase during pollen season. J Investig Allergol Clin Immunol 2000, 10(1):24–29.Google Scholar
  17. 17.
    Dibbern DA, Palmer GW, Williams PB, Bock SA, Dreskin SC. RBL cells expressing human Fc epsilon RI are a sensitive tool for exploring functional IgE-allergen interactions: studies with sera from peanut-sensitive patients. J Immunol Methods 2003, 274(1–2):37–45Google Scholar
  18. 18.
    Ebo DG. Component-resolved allergy diagnosis: a new era? Verh K Acad Geneeskd Belg 2011, 73(3–4):163–179Google Scholar
  19. 19.
    Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy(CRD and CRIT). Clin Exp Allergy. 1999, 29(7):896–904Google Scholar
  20. 20.
    Ott H, Baron JM, Heise R, Ocklenburg C, Stanzel S, Merk H-F, Niggemann B, Beyer K. Clinical usefulness of microarray-based IgE detection in children with suspected food allergy. Allergy 2008, 63(11):1521–1528Google Scholar
  21. 21.
    Breiteneder H, Radauer C: A classification of plant food allergens. J Allergy Clin Immunol 2004, 113(5):821–830; quiz 831Google Scholar
  22. 22.
    Jenkins JA, Breiteneder H, Mills EN: Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 2007, 120(6):1399–1405Google Scholar
  23. 23.
    Radauer C, Breiteneder H: Evolutionary biology of plant food allergens. J Allergy Clin Immunol 2007, 120(3):518–525.Google Scholar
  24. 24.
    Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR: Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol. 1985, 183(3):499–502.Google Scholar
  25. 25.
    Maruyama N, Ichise K, Katsube T, Kishimoto T, Kawase S-i, Matsumura Y, Takeuchi Y, Sawada T, Utsumi S: Identification of major wheat allergens by means of the Escherichia coli expression system. Eur J Biochem. 1998, 255(3):739–745.Google Scholar
  26. 26.
    Breiteneder H, Mills EN. Molecular properties of food allergens. J Allergy Clin Immunol 2005, 115:14–23.Google Scholar
  27. 27.
    Robotham JM, Wang F, Seamon V, Teuber SS, Sathe SK, Sampson HA, et al. Ana o 3, an important cashew nut ( Anacardium occidentale L.) allergen of the 2S albumin family. J Allergy Clin Immunol 2005, 115:1284–90.Google Scholar
  28. 28.
    Radauer C, Merima B, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 2008, 121:847–852.Google Scholar
  29. 29.
    Dunwell JM, Khuri S, Gane PJ. Micro bial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 2000, 64:153–79.Google Scholar
  30. 30.
    Mills EN, Jenkins JA, Alcocer MJ, Shewry PR. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 2004, 44(5):379–407.Google Scholar
  31. 31.
    Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse protein superfamily? Phytochemistry 2004, 65:7–17.Google Scholar
  32. 32.
    Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW. Cristal structure of auxin-binding protein 1 in complex with auxin. EMBO J 2002, 21(12):2877–2885.Google Scholar
  33. 33.
    Baumlein H, Braun H, Kakhovskaya IA, Shutov AD. Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. J Mol Evol 1995, 41:1070–1075.Google Scholar
  34. 34.
    Maruyama N, Adachi M, Takahashi K, Yagasaki K, Kohno M, Takenaka Y, Okuda E, Nakagawa S, Mikami B, Utsumi S. Crystal structures of recombinant and native soybean beta-conglycinin beta homotrimer. Eur J Biochem 2001, 268(12):3595–3604.Google Scholar
  35. 35.
    Adachi M, Kanamori J, Masuda T, Yagasaki K, Kitamura K, Mikami B, Utsumi S. Crystal structure of soybean 11S globulin: glycin A3B4 homohexamer. Proc Natal Acad Sci USA 2003, 100(12):7395–7400.Google Scholar
  36. 36.
    Thompson MJ, Eisenberg D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 1999, 290(2):595–604.Google Scholar
  37. 37.
    Polt G, Ahrazem O, Paschinger K, Ibanez MD, Salcedo G, Wilson IB. Molecular and immunological characterization of the glycosylated orange allergen Cit s 1. Glycobiology 2007, 17(2):220–230.Google Scholar
  38. 38.
    van Loon LC, Rep M, Pieterse CM: Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 2006, 44:135–162.Google Scholar
  39. 39.
    Breiteneder H, Ebner C: Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 2000, 106(1 Pt 1):27–36.Google Scholar
  40. 40.
    Breiteneder H, Mills C: Structural bioinformatic approaches to understand cross-reactivity. Mol Nutr Food Res 2006, 50(7):628–632.Google Scholar
  41. 41.
    Varjonen E, Vainio E, Kalimo K. Antigliadin IgE indicator of wheat allergy in atopic dermatitis. Allergy 2000, 55(4):386–391.Google Scholar
  42. 42.
    Takizawa T, Arakawa H, Tokuyama K, Morikawa A. Identification of allergen fractions of wheat flour responsible for anaphylactic reactions to wheat products in infants and young children. Int Arch Allergy Immunol. 2001, 125(1):51–56.Google Scholar
  43. 43.
    Maruyama N, Ichise K, Katsube T, Kishimoto T, Kawase S-i, Matsumura Y, Takeuchi Y, Sawada T, Utsumi S: Identification of major wheat allergens by means of the Escherichia coli expression system. Eur J Biochem 1998, 255(3):739–745.Google Scholar
  44. 44.
    Varjonen E, Vainio E, Kalimo K: Life-threatening, recurrent anaphylaxis caused by allergy to gliadin and exercise. Clin Exp Allergy 1997, 27(2):162–166.Google Scholar
  45. 45.
    Palosuo K, Alenius H, Varjonen E, Koivuluhta M, Mikkola J, Keskinen H, Kalkkinen N, Reunala T: A novel wheat gliadin as a cause of exercise-induced anaphylaxis. J Allergy Clin Immunol 1999, 103(5 Pt 1):912–917.Google Scholar
  46. 46.
    Varjonen E, Vainio E, Kalimo K, Juntunen-Backman K, Savolainen J: Skin-prick test and RAST responses to cereals in children with atopic dermatitis. Characterization of IgE-binding components in wheat and oats by an immunoblotting method. Clin Exp Allergy 1995, 25(11):1100–1107.Google Scholar
  47. 47.
    Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Ispano M, Monza M, Baroglio C, Scibola E, Ansaloni R, Incorvaia C et al: The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol 1999, 103(3 Pt 1):520–526.Google Scholar
  48. 48.
    Pastorello EA, Ortolani C, Baroglio C, Pravettoni V, Ispano M, Giuffrida MG, Fortunato D, Farioli L, Monza M, Napolitano L et al: Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1. Biol. Chem. 1999, 380(11):1315–1320.Google Scholar
  49. 49.
    Pastorello EA, Pravettoni V, Farioli L, Ispano M, Fortunato D, Monza M, Giuffrida MG, Rivolta F, Scibola E, Ansaloni R et al: Clinical role of a lipid transfer protein that acts as a new apple-specific allergen. J Allergy Clin Immunol 1999, 104(5):1099–1106.Google Scholar
  50. 50.
    Sanchez-Monge R, Lombardero M, Garcia-Selles FJ, Barber D, Salcedo G: Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol 1999, 103(3 Pt 1):514–519.Google Scholar
  51. 51.
    Pastorello EA, Farioli L, Pravettoni V, Ispano M, Scibola E, Trambaioli C, Giuffrida MG, Ansaloni R, Godovac-Zimmermann J, Conti A, Fortunato D, Ortolani C. The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. J Allergy Clin Immunol 2000, 106(4):744–751.Google Scholar
  52. 52.
    Pastorello EA, D’Ambrosio FP, Pravettoni V, Farioli L, Giuffrida G, Monza M, Ansaloni R, Fortunato D, Scibola E, Rivolta F, Incorvaia C, Bengtsson A, Conti A, Ortolani C. Evidence for a lipid transfer protein as the major allergen of apricot. J Allergy Clin Immunol 2000, 105(2 Pt 1):371–377.Google Scholar
  53. 53.
    Scheurer S, Pastorello EA, Wangorsch A, Kastner M, Haustein D, Vieths S. Recombinant allergens Pru av 1 and Pru av 4 and a newly identified lipid transfer protein in the in vitro diagnosis of cherry allergy. J Allergy Clin Immunol 2001, 107(4):724–731.Google Scholar
  54. 54.
    James JM, Sixbey JP, Helm RM, Bannon GA, Burks AW. Wheat alpha-amylase inhibitor: a second route of allergic sensitization. J Allergy Clin Immunol 1997, 99(2):239–244.Google Scholar
  55. 55.
    Curioni A, Santucci B, Cristaudo A, Canistraci C, Pietravalle M, Simonato B, Giannattasio M. Urticaria from beer: an immediate hypersensitivity reaction due to a 10-kDa protein derived from barley. Clin Exp Allergy 1999, 29(3):407–413.Google Scholar
  56. 56.
    Alvarez AM, Adachi T, Nakase M, Aoki N, Nakamura R, Matsuda T. Classification of rice allergenic protein cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family. Biochimica Biophysica Acta 1995, 1251(2):201–204.Google Scholar
  57. 57.
    Izumi H, Adachi T, Fujii N, Matsuda T, Nakamura R, Tanaka K, Urisu A, Kurosawa Y. Nucleotide sequence of a cDNA clone encoding a major allergenic protein in rice seeds. Homology of the deduced amino acid sequence with members of alpha-amylase/trypsin inhibitor family. FEBS Letters 1992, 302(3):213–216.Google Scholar
  58. 58.
    Nakase M, Adachi T, Urisu A, Miyashita T, Alvarez AM, Nagasaka S, Aoki N, Nakamura R, Matsuda T: Rice ( Oryza sativa L.) α-Amylase Inhibitors of 14–16 kDa Are Potential Allergens and Products of a Multigene Family. J Agric Food Chem 1996, 44(9):2624–2628.Google Scholar
  59. 59.
    Teuber SS, Dandekar AM, Peterson WR, Sellers CL. Cloning and sequencing of a gene encoding a 2S albumin seed storage protein precursor from English walnut (Juglans regia), a major food allergen. J Allergy Clin Immunol 1998, 101(6 Pt 1):807–814.Google Scholar
  60. 60.
    Menendez-Arias L, Moneo I, Dominguez J, Rodriguez R. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J Biochem 1988, 177(1):159–166.Google Scholar
  61. 61.
    Monsalve RI, Gonzalez de la Pena MA, Menendez-Arias L, Lopez-Otin C, Villalba M, Rodriguez R. Characterization of a new oriental-mustard (Brassica juncea) allergen, Bra j IE: detection of an allergenic epitope. Biochem J 1993, 293 (Pt 3):625–632.Google Scholar
  62. 62.
    Pastorello EA, Farioli L, Pravettoni V, Ispano M, Conti A, Ansaloni R, Rotondo F, Incorvaia C, Bengtsson A, Rivolta F, Trambaioli C, Previdi M, Ortolani C. Sensitization to the major allergen of Brazil nut is correlated with the clinical expression of allergy. J Allergy Clin Immunol 1998, 102(6 Pt 1):1021–1027.Google Scholar
  63. 63.
    Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM: Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 1992, 90(6 Pt 1):962–969.Google Scholar
  64. 64.
    Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM: Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 1999, 119(4):265–274.Google Scholar
  65. 65.
    Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, West CM, Bannon GA: Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 1997, 342(2):244–253.Google Scholar
  66. 66.
    Pastorello EA, Varin E, Farioli L, Pravettoni V, Ortolani C, Trambaioli C, Fortunato D, Giuffrida MG, Rivolta F, Robino A et al: The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin. J Chromatography B Biomed Sci Appl 2001, 756(1–2):85–93.Google Scholar
  67. 67.
    Kelly JD, Hlywka JJ, Hefle SL: Identification of sunflower seed IgE-binding proteins. Int Arch Allergy Immunol 2000, 121(1):19–24.Google Scholar
  68. 68.
    Burks AW, Williams LW, Helm RM, Connaughton C, Cockrell G, O’Brien T: Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. J Allergy Clin Immunol 1991, 88(2):172–179.Google Scholar
  69. 69.
    Schuler MA, Ladin BF, Pollaco JC, Freyer G, Beachy RN: Structural sequences are conserved in the genes coding for the alpha, alpha and beta-subunits of the soybean 7S seed storage protein. Nucleic Acids Research 1982, 10(24):8245–8261.Google Scholar
  70. 70.
    Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, Burks AW, Bannon GA: Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Investig 1999, 103(4):535–542.Google Scholar
  71. 71.
    Beardslee TA, Zeece MG, Sarath G, Markwell JP: Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen Ara h 3. Int Arch Allergy Immunol 2000, 123(4):299–307.Google Scholar
  72. 72.
    Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ, Fischer RL, Sims TL, Drews GN, Goldberg RB: Characterization of the glycinin gene family in soybean. Plant Cell 1989, 1(3):313–328.Google Scholar
  73. 73.
    Pastorello EA, Conti A, Pravettoni V, Farioli L, Rivolta F, Ansaloni R, Ispano M, Incorvaia C, Giuffrida MG, Ortolani C: Identification of actinidin as the major allergen of kiwi fruit. J Allergy Clin Immunol 1998, 101(4 Pt 1):531–537.Google Scholar
  74. 74.
    Ogawa T, Tsuji H, Bando N, Kitamura K, Zhu Y-L, Hirano H, Nishikawa K: Identification of the soyabean allergenic proteins, Gly m Bd 30K, with the soybean seed 34 kDa oil-body-associated protein. Biosci. Biotechnol. Biochem 1993, 57:1030–1033.Google Scholar
  75. 75.
    Jenkins JA, Breiteneder H, Mills EN: Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 2007, 120(6):1399–1405Google Scholar
  76. 76.
    Kanduc D, Lucchese A, Mittelman A: Individuation of monoclonal anti-HPV16 E7 antibody linear peptide epitope by computational biology. Peptides 2001, 22(12):1981–1985Google Scholar
  77. 77.
    Sharp MF, Lopata AL. Fish allergy: in review. Clinic Rev Allerg Immunol 2013, in pressGoogle Scholar
  78. 78.
    Elsayed S, Apold J. Immunochemical analysis of cod fish allergen M: locations of the immunoglobulin binding sites as demonstrated by the native and synthetic peptides. Allergy 1983, 38:449–459Google Scholar
  79. 79.
    Kretsinger RH. Structure and evolution of calcium-modulated proteins. CRC Critical Reviews in Biochemistry, 1980, 8(2):119–174Google Scholar
  80. 80.
    Bugajska-Schretter A, Elfman L, Fuchs T, Kapiotis S, Rumpold H, Valenta R, Spitzauer S. Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. J Allergy Clin Immunol 1998, 101:67–74.Google Scholar
  81. 81.
    Swoboda I, Bugajska-Schretter A, Verdino P, Keller W, Sperr WR, Valent P, Valenta R, Spitzauer S. Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol 2002, 168:4576–4584.Google Scholar
  82. 82.
    Lim DL-C, Keng Hwee N, Fong Cheng Y, Kaw Yan C, Denise Li-Meng G, Lynette Pei-Chi S, Yoke Chin G, Hugo PSVB, Bee Wah L. Parvalbumin the major tropical fish allergen. Pediatric Allergy Immunol 2008, 19:399–407.Google Scholar
  83. 83.
    Van Do T, Hordvik I, Endresen C, Elssayed S. The major allergen (parvalbumin) of codfish is encoded by at least two isotypic genes: cDNA cloning, expression and antibody binding of the recombinant allergens. Mol Immunol 2003, 39:595–602.Google Scholar
  84. 84.
    Perez-Gordo M, Lin J, Bardina L, Pastor-Vargas C, Cases B, Vivanco F, Cuesta-Herranz J, Sampson HA. Epitope mapping of Atlantic salmon major allergen by peptide ­micro array immunoassay. Int Arch Allergy Immunol. 2012, 157(1):31–40Google Scholar
  85. 85.
    Das Dores S, Chopin C, Villaume C, Fleurence J, Gueant JL. A new oligomeric parvalbumin allergen of Atlantic cod (Gad mI) encoded by a gene distinct from that of Gad cI. Allergy 2002, 57(72):79–83.Google Scholar
  86. 86.
    Rosmilah M, Shahnaz M, Masita A, Noormalin A, Jamaludin M. Identification of major allergens of two species of local snappers: Lutjanus argentimaculatus (merah/red snapper) and Lutjanus johnii (jenahak/golden snapper). Trop Biomed 2005, 22(2):171–177Google Scholar
  87. 87.
    Tomm JM, van Do T, Jende C, Simon JC, Treudler R, von Bergen M, Averbeck M. Identification of New Potential Allergens From Nile Perch (Lates niloticus) and Cod (Gadus morhua). J Investig Allergol Clin Immunol 2013; 23(3):159–167.Google Scholar
  88. 88.
    Lopata AL, Lehrer SB. New insights into seafood allergy. Curr Opin Allergy Clin Immunol. 2009, 9(3):270–7.Google Scholar
  89. 89.
    Kirstein F, Horsnell WG, Nieuwenhuizen N, Ryffel B, Lopata AL, Brombacher F. Anisakis-induced airway hyperresponsiveness is mediated by IFN- { gamma } in the absence of IL-4R{alpha}-responsiveness. Infect Immun. 2010, 78(9):4077–4086.Google Scholar
  90. 90.
    Nieuwenhuizen N, Lopata AL, Jeebhay MLF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergy airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006, 117(5):1098–1105Google Scholar
  91. 91.
    Lopata AL, O’Hehir RE, Lehrer SB. Shellfish allergy. Clin Exp Allergy 2010, 40(6):850–858.Google Scholar
  92. 92.
    Hoffman DR, Day ED, Miller JS. The major heat-stable allergen of shripm. Ann Allergy 1981, 47(1):17–22.Google Scholar
  93. 93.
    Daul J Slattery M, Reese G, Lehrer SB. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 1994, 105(1):49–55.Google Scholar
  94. 94.
    Patrick SCL, Chu KH, Chow WK, Ansari A, Bandea CI, Kwan HS, Nagy SM, Gershwin EM. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol 1994, 94(5):882–890.Google Scholar
  95. 95.
    Yu CJ, Lin YF, Chiang BL, Chow LP. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 2003, 170(1):445–453.Google Scholar
  96. 96.
    Taylor SL. Molluscan shellfish allergy. Adv Food Nutr Res 2008, 54:139–177.Google Scholar
  97. 97.
    Mita H, Koketsu A, Ishizaki S, Shiomi K. Molecular cloning and functional expression of allergenic sarcoplasmic calcium-binding proteins from Penaeus shrimps. J Sci Food Agric 2013, 93(7):1737–1742.Google Scholar
  98. 98.
    Abdel Rahman AM, Helleur RJ, Jeebhay MF, Lopata AL. Characterization of Seafood Proteins Causing Allergic Diseases. Allergic Diseases 2012, (5):107–140.Google Scholar
  99. 99.
    Lopata AL, Zinn C, Potter PC. Characteristics of hypersensitivity reactions and identification of a unique 49 kD IgE-binding protein (Hal-m-1) in abalone (Haliotis midae). J Allergy Clin Immunol 1997, 100(5):642–648.Google Scholar
  100. 100.
    Blanc F, Bernard H, Alessandri S, Bublin M, Paty E, Leung SA, Patient KA, Wal J-M. Update on optimized purification and characterization of natural milk allergens. Mol. Nutr. Food Res. 2008, 52(2):S166–S175.Google Scholar
  101. 101.
    Somma A, Ferranti P, Addeo F, Mauriello R, Chianese L. Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo β-casein. J Chromatogr A 2008, 1192(2):294–300.Google Scholar
  102. 102.
    Kontopidis G, Holt C, Sawyer L. The ligand-binding site of bovine beta-lactoglobulin: evidence for a function? J. Mol. Biol. 2002, 318(4):1043–1055Google Scholar
  103. 103.
    Stanic-Vucinic D, Stojadinovic M, Atanaskovic-Markovic M, Ognjenovic J, Gronlund H, van Hage M, Lantto R, Sancho AI, Cirkovic Velickovic T. Structural changes and allergenic properties of beta-lactoglobulin upon exposure to high-intensity ultrasound. Mol. Nutr. Food Res. 2012, 56(12):1894–1905.Google Scholar
  104. 104.
    Lonnerdal B, Lien EL. Nutritional and physiologic significance of α-lactalbumin in infants. Nutrition Reviews 2003, 61(9):295–305.Google Scholar
  105. 105.
    Osuga DT, Feeney RE. Biochemistry of the egg-white proteins of the ratite group. Arch. Biochem. Biophy. 1968,124:560–574.Google Scholar
  106. 106.
    Besler M, Steinhart H, Paschke A. Allergenicity of hen s egg-white proteins: IgE-binding of native and deglycosylated ovomucoid. Food Agric. Immunol. 1997, 9(4):277–288.Google Scholar
  107. 107.
    Kato I, Schrode S, Kohr WJ, Laskowski M, Jr. Chicken ovomucoid: Determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains. Biochemistry 1987, 26(1):193–201.Google Scholar
  108. 108.
    Yamashita K, Kamerling JP, Kobata A. Structural study of the carbohydrate moiety of hen ovomucoid occurrence of a series of penta-antennary complex-type asparagine linked sugar chains. J. Biol. Chem. 1982, 257(21):12809–12814.Google Scholar
  109. 109.
    Yet MG, Chin CC, Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J. Biol. Chem. 1988, 263(1):111–7.Google Scholar
  110. 110.
    Jacobsen B, Hoffmann-Sommergruber K, Thordahl Have T, Foss N, Briza P, Oberhuber C, Radauer C, Alessandri S, Knulst AC, Fernandez-Rivas M, Barkholt V. The panel of egg allergens, Gal d 1-Gal d 5: Their improved purification and characterization. Mol. Nutr. Food Res. 2008, 52(2):S176–S185.Google Scholar
  111. 111.
    Nisbet AD, Saundry RH, Moir AJG, Fothergill LA, Fothergill JE. The complete amino acid sequence of hen ovalbumin. Eur. J. Biochem. 1981, 115(2):335–345.Google Scholar
  112. 112.
    Perlmann GE. Enzymatic dephosphorylation of ovalbumin and plakalbumin. J Gen Physiol. 1952, 35(5):711–26.Google Scholar
  113. 113.
    Schafer A, Drewes W, Schwagele F. Effect of storage temperature and time on egg white protein. Nahrung-Food 1999, 43(2):86–89.Google Scholar
  114. 114.
    Williams J, Elleman TC, Kingston IB, Wilkins AG, Kuhn KA. The primary structure of hen ovotransferrin. Eur. J. Biochem. 1982, 122(2):297–303.Google Scholar
  115. 115.
    Aisen P, Leibman A, Reich HA. Studies on binding of iron to transferrin and conalbumin. J. Biol. Chem. 1966, 241:1666–1671.Google Scholar
  116. 116.
    Canfield RE, Liu AK. The disulfide bonds of egg white lysozyme (Muramidase). J. Biol. Chem. 1965, 240:1997–2002.Google Scholar
  117. 117.
    Amo A, Rodriguez-Perez R, Blanco J, Villota J, Juste S, R, Moneo I, Caballero ML. Gal d 6 is the second allergen characterized from egg yolk. J. Agric. Food Chem. 2010, 58(12):7453–7457.Google Scholar
  118. 118.
    Martos G, Pineda-Vadillo C, Miralles B, Alonso-Lebrero E, Lopez-Fandino R, Molina E, Belloque J. Identification of an IgE reactive peptide in hen egg riboflavin binding protein subjected to simulated gastrointestinal digestion . J Agri Food Chem 2012, 60(20):5215–5220.Google Scholar
  119. 119.
    Sampson HA, Cooke SK. Food allergy and the potential allergenicity-antigenicity of micro particulated egg and cow s milk proteins. J. Am. Coll. Nutr. 1990, 9(4):410–417.Google Scholar
  120. 120.
    Bausela BA, García-Ara MC, Esteban MM, Martínez TB, Díaz Pena JM, Ojeda Casas JA. Peculiarities of egg allergy in children with bird protein sensitization. Ann. Allergy Asthma Immunol. 1997, 78(2):213–216.Google Scholar
  121. 121.
    Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF. Swaisgood HE. Nomenclature of the proteins of cows milk sixth revision. J Dairy Sci 2004, 87(6):1641–1674Google Scholar
  122. 122.
    Lisson M, Lochnit G, Erhardt G. Genetic variants of bovine beta- and kappa-casein result in different immunoglobulin E-binding epitopes after in vitro gastrointestinal digestion. J Dairy Sci 2013, 96(9):5532–5543.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tanja Ćirković Veličković
    • 1
  • Marija Gavrović-Jankulović
    • 1
  1. 1.Department of Biochemistry Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations