Advertisement

Quaternion Identities

  • F. Landis Markley
  • John L. Crassidis
Part of the Space Technology Library book series (SPTL, volume 33)

Abstract

The purpose of this chapter is to present a collection of vector and quaternion identities that are useful for control and estimation computations. Many of them used throughout this text. Several appear in Chap.  2 but are repeated here for convenience.

References

  1. 1.
    Choukroun, D., Bar-Itzhack, I.Y., Oshman, Y.: Novel quaternion Kalman filter. IEEE Trans. Aerospace Electron. Syst. 42(1), 174–190 (2006)CrossRefGoogle Scholar
  2. 2.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  3. 3.
    Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. Contr. Dynam. 5(5), 417–429 (1982)CrossRefGoogle Scholar
  4. 4.
    Paielli, R.A., Bach, R.E.: Attitude control with realization of linear error dynamics. J. Guid. Contr. Dynam. 16(1), 182–189 (1993)CrossRefGoogle Scholar
  5. 5.
    Pittelkau, M.E.: Square root quaternion estimation. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, CA (2002). AIAA 2002-4914Google Scholar
  6. 6.
    Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)MathSciNetGoogle Scholar
  7. 7.
    Shuster, M.D., Oh, S.D.: Attitude determination from vector observations. J. Guid. Contr. 4(1), 70–77 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Landis Markley
    • 1
  • John L. Crassidis
    • 2
  1. 1.Attitude Control Systems Engineering BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Mechanical and Aerospace EngineeringUniversity at Buffalo State University of New YorkAmherstUSA

Personalised recommendations