Advertisement

Matrices, Vectors, Frames, Transforms

  • F. Landis Markley
  • John L. Crassidis
Part of the Space Technology Library book series (SPTL, volume 33)

Abstract

This chapter begins with an overview of matrices and vectors, which are used extensively in attitude analysis. We assume that the reader has some familiarity with this material, so the account is not completely self-contained. The principal objective of this section is to define our notation and conventions.

References

  1. 1.
    Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications, New York (1971)Google Scholar
  2. 2.
    Davenport, P.B.: Rotations about nonorthogonal axes. AIAA J. 11(6), 853–857 (1973)CrossRefGoogle Scholar
  3. 3.
    Farrell, J., Barth, M.: The Global Positioning System & Inertial Navigation. McGraw-Hill, New York (1998)Google Scholar
  4. 4.
    Fraiture, L.: A history of the description of the three-dimensional finite rotation. J. Astronaut. Sci. 57(1/2), 207–232 (2009)CrossRefGoogle Scholar
  5. 5.
    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)zbMATHGoogle Scholar
  6. 6.
    Hill, G.W.: Researches in lunar theory. Am. J. Math. 1(1), 5–26 (1878)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. Contr. Dynam. 5(5), 417–429 (1982)CrossRefGoogle Scholar
  8. 8.
    Ma, C., Arias, E.F., Eubanks, T.M., Frey, A.L., Gontier, A.M., Jacobs, C.S., Sovers, O.J., Archinal, B.A., Charlot, P.: The International Celestial Reference Frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998)CrossRefGoogle Scholar
  9. 9.
    Marandi, S.R., Modi, V.J.: A preferred coordinate system and the associated orientation representation in attitude dynamics. Acta Astronautica 15(11), 833–843 (1987)CrossRefGoogle Scholar
  10. 10.
    Markley, F.L.: Unit quaternion from rotation matrix. J. Guid. Contr. Dynam. 31(2), 440–442 (2008)CrossRefGoogle Scholar
  11. 11.
    Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, and Applications. Springer, Berlin Heidelberg New York (2000)CrossRefGoogle Scholar
  12. 12.
    Palais, B., Palais, R.: Euler’s fixed point theorem: The axis of a rotation. J. Fixed point Theory Appl. 2(2), 215–220 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pittelkau, M.E.: An analysis of the quaternion attitude determination filter. J. Astronaut. Sci. 51(1) (2003)Google Scholar
  14. 14.
    Rodrigues, O.: Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. J. de Mathématiques Pures et Appliquées 5, 380–440 (1840)Google Scholar
  15. 15.
    Schaub, H., Junkins, J.L.: Stereographic orientation parameters for attitude dynamics: A generalization of the Rodrigues parameters. J. Astronaut. Sci. 44(1), 1–19 (1996)MathSciNetGoogle Scholar
  16. 16.
    Schaub, H., Junkins, J.L.: Analytical Mechanics of Aerospace Systems, 2nd edn. American Institute of Aeronautics and Astronautics, New York (2009)zbMATHGoogle Scholar
  17. 17.
    Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)MathSciNetGoogle Scholar
  18. 18.
    Shuster, M.D., Markley, F.L.: Generalization of the Euler angles. J. Astronaut. Sci. 51(2), 123–132 (2003)MathSciNetGoogle Scholar
  19. 19.
    Shuster, M.D., Markley, F.L.: General formula for extracting the Euler angles. J. Guid. Contr. Dynam. 29(1), 215–217 (2006)CrossRefGoogle Scholar
  20. 20.
    Sofair, I.: Improved method for calculating exact geodetic latitude and altitude revisited. J. Guid. Contr. Dynam. 23(2), 369 (2000)CrossRefGoogle Scholar
  21. 21.
    Stewart, G.W.: Introduction to Matrix Computations. Academic Press, New York (1973)zbMATHGoogle Scholar
  22. 22.
    Stuelpnagel, J.: On the parametrization of the three-dimensional rotation group. SIAM Rev. 6(4), 422–430 (1964)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tsiotras, P., Junkins, J.L., Schaub, H.: Higher-order Cayley transforms with applications to attitude representations. J. Guid. Contr. Dynam. 20(3), 528–534 (1997)CrossRefGoogle Scholar
  24. 24.
    Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Microcosm Press, Hawthorne and Springer, New York (2007)Google Scholar
  25. 25.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, Chichester (1972)Google Scholar
  26. 26.
    Wiener, T.F.: Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge (1962)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Landis Markley
    • 1
  • John L. Crassidis
    • 2
  1. 1.Attitude Control Systems Engineering BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Mechanical and Aerospace EngineeringUniversity at Buffalo State University of New YorkAmherstUSA

Personalised recommendations