Review of Control and Estimation Theory

  • F. Landis Markley
  • John L. Crassidis
Part of the Space Technology Library book series (SPTL, volume 33)


The purpose of this chapter is to provide a review of control and estimation theory. It is expected that the reader has some basic knowledge of dynamical systems and probability theory. Several of the concepts shown in this chapter are used throughout the text. First a basic review of system modeling using differential equations is shown. This is followed by linear and nonlinear control theory. Then estimation concepts, such as maximum likelihood and the Kalman filter, are reviewed. The reader is encouraged to read the several cited texts in this chapter for further information.


  1. 1.
    Arnold, W.F., Laub, A.J.: Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72(12), 1746–1754 (1984)CrossRefGoogle Scholar
  2. 2.
    Bierman, G.J.: Factorization Methods for Discrete Sequential Estimation. Academic Press, Orlando (1977)zbMATHGoogle Scholar
  3. 3.
    Chen, C.T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York (1984)Google Scholar
  4. 4.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  5. 5.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems. Addison Wesley Longman, Menlo Park (1998)Google Scholar
  6. 6.
    Fagin, S.L.: Recursive linear regression theory, optimal filter theory, and error analysis of optimal systems. In: 1964 IEEE International Convention Record, pp. 216–240 (1964)Google Scholar
  7. 7.
    Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of Dynamic Systems, 3rd edn. Addison Wesley Longman, Menlo Park (1998)Google Scholar
  8. 8.
    Gelb, A. (ed.): Applied Optimal Estimation. MIT Press, Cambridge (1974)Google Scholar
  9. 9.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  10. 10.
    Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)zbMATHGoogle Scholar
  11. 11.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 95–108 (1961)MathSciNetCrossRefGoogle Scholar
  12. 12.
    LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. Dover Publications, New York (1980)zbMATHGoogle Scholar
  13. 13.
    Lewis, F.L.: Optimal Estimation with an Introduction to Stochastic Control Theory. Wiley, New York (1986)zbMATHGoogle Scholar
  14. 14.
    Lizarralde, F., Wen, J.T.Y.: Attitude control without angular velocity measurement: A passivity approach. IEEE Trans. Automat. Contr. 41(3), 468–472 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Markley, F.L., Carpenter, J.R.: Generalized linear covariance analysis. J. Astronaut. Sci. 57(1 & 2), 233–260 (2009)CrossRefGoogle Scholar
  16. 16.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Maybeck, P.S.: Stochastic Models, Estimation, and Control, vol. 1. Academic Press, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Moler, C., van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20(4), 801–836 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Palm, W.J.: Modeling, Analysis, and Control of Dynamic Systems, 2nd edn. Wiley, New York (1999)Google Scholar
  20. 20.
    Phillips, C.L., Nagle, H.T.: Digital Control System Analysis and Design, 2nd edn. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  21. 21.
    Psiaki, M.L., Martel, F., Pal, P.K.: Three-axis attitude determination via Kalman filtering of magnetometer data. J. Guid. Contr. Dynam. 13(3), 506–514 (1990)CrossRefGoogle Scholar
  22. 22.
    Rao, S.S.: Engineering Optimization: Theory and Practice, 3rd edn. Wiley, New York (1996)Google Scholar
  23. 23.
    Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sedlack, J., Hashmall, J.: Accurate magnetometer/gyroscope attitudes using a filter with correlated sensor noise. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 293–303. NASA-Goddard Space Flight Center, Greenbelt (1997)Google Scholar
  25. 25.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  26. 26.
    Sorenson, H.W.: Parameter Estimation, Principles and Problems. Marcel Dekker, New York (1980)Google Scholar
  27. 27.
    Stengel, R.F.: Optimal Control and Estimation. Dover Publications, New York (1994)zbMATHGoogle Scholar
  28. 28.
    Żak, S.H.: Systems and Control. Oxford University press, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Landis Markley
    • 1
  • John L. Crassidis
    • 2
  1. 1.Attitude Control Systems Engineering BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Mechanical and Aerospace EngineeringUniversity at Buffalo State University of New YorkAmherstUSA

Personalised recommendations