Advertisement

A Polynomial Algorithm for a Class of 0–1 Fractional Programming Problems Involving Composite Functions, with an Application to Additive Clustering

  • Pierre Hansen
  • Christophe Meyer
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)

Abstract

We derive conditions on the functions \(\varphi\), ρ, v and w such that the 0–1 fractional programming problem \(\max \limits _{x\in \{0;1\}^{n}} \frac{\varphi \circ v(x)} {\rho \circ w(x)}\) can be solved in polynomial time by enumerating the breakpoints of the piecewise linear function \(\Phi (\lambda ) =\max \limits _{x\in \{0;1\}^{n}}v(x) -\lambda w(x)\) on [0; +). In particular we show that when \(\varphi\) is convex and increasing, ρ is concave, increasing and strictly positive, v and − w are supermodular and either v or w has a monotonicity property, then the 0–1 fractional programming problem can be solved in polynomial time in essentially the same time complexity than to solve the fractional programming problem \(\max \limits _{x\in \{0;1\}^{n}} \frac{v(x)} {w(x)}\), and this even if \(\varphi\) and ρ are non-rational functions provided that it is possible to compare efficiently the value of the objective function at two given points of {0; 1} n . We apply this result to show that a 0–1 fractional programming problem arising in additive clustering can be solved in polynomial time.

Keywords

0–1 fractional programming Submodular function Polynomial algorithm Composite functions Additive clustering 

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Arabie, P., Carroll, J.D.: MAPCLUS: a mathematical programming approach to fitting the ADCLUS model. Psychometrika 45(2), 211–235 (1980)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Balinski, M.L.: On a selection problem. Manag. Sci. 17, 230–231 (1970)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Berge, J.M.F.T., Kiers, H.A.L.: A comparison of two methods for fitting the INDCLUS model. J. Classif. 22(2), 273–286 (2005)CrossRefGoogle Scholar
  5. 5.
    Billionnet, A., Minoux, M.: Maximizing a supermodular pseudoboolean function: a polynomial algorithm for supermodular cubic functions. Discrete Appl. Math. 12, 1–11 (1985)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Blömer, J.: Computing sums of radicals in polynomial time. In: 32nd Annual Symposium on Foundations of Computer Science, San Juan, PR, 1991, pp. 670–677. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  7. 7.
    Carroll, J.D., Arabie, P.: INDCLUS: an individual differences generalization of the ADCLUS model and the MAPCLUS algorithm. Psychometrika 48, 157–169 (1983)CrossRefGoogle Scholar
  8. 8.
    Carstensen, P.J.: Complexity of some parametric integer and network programming problems. Math. Program. 26(1), 64–75 (1983)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chang, C.-T.: On the polynomial mixed 0-1 fractional programming problems. Eur. J. Oper. Res. 131(1), 224–227 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logist. Q. 9, 181–186 (1962)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chaturvedi, A., Carroll, J.D.: An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models. J. Classif. 11, 155–170 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Correa, J.R., Fernandes, C.G., Wakabayashi, Y.: Approximating a class of combinatorial problems with rational objective function. Math. Program. 124(1–2, Ser. B), 255–269 (2010)Google Scholar
  13. 13.
    Craven, B.D.: Fractional Programming. Helderman Verlag, Berlin (1988)MATHGoogle Scholar
  14. 14.
    Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Desarbo, W.S.: GENNCLUS: new models for general nonhierarchical clustering analysis. Psychometrika 47(4), 449–475 (1982)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in large shared databases. J. Assoc. Comput. Mach. 23(4), 619–635 (1976)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Frenk, J.B.G., Schaible, S.: Fractional programming. In: Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol. 76, pp. 335–386. Springer, New York (2005)Google Scholar
  20. 20.
    Frenk, J.B.G., Schaible, S.: Fractional programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1080–1091. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Gallo, G., Simeone, B.: On the supermodular knapsack problem. Math. Program. 45(2, Ser. B), 295–309 (1989)Google Scholar
  22. 22.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  24. 24.
    Goemans, M.X., Ramakrishnan, V.S.: Minimizing submodular functions over families of sets. Combinatorica 15(4), 499–513 (1995)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Granot, F., McCormick, S.T., Queyranne, M., Tardella, F.: Structural and algorithmic properties for parametric minimum cuts. Math. Program. 135(1–2, Ser. A), 337–367 (2012)Google Scholar
  26. 26.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)Google Scholar
  28. 28.
    Gusfield, D.M.: Sensitivity analysis for combinatorial optimization. Ph.D. thesis, University of California, Berkeley (1980)Google Scholar
  29. 29.
    Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)CrossRefMATHGoogle Scholar
  30. 30.
    Hammer, P.L., Hansen, P., Pardalos, P.M., Rader, D.J.: Maximizing the product of two linear functions in 0 − 1 variables. Optimization 51(3), 511–537 (2002)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Hansen, P., Poggi de Aragão, M.V., Ribeiro, C.C.: Hyperbolic 0-1 programming and query optimization in information retrieval. Math. Program. 52(2, Ser. B), 255–263 (1991)Google Scholar
  32. 32.
    Hansen, P., Jaumard, B., Meyer, C.: Exact sequential algorithms for additive clustering. Technical Report G-2000-06, GERAD (March 2000)Google Scholar
  33. 33.
    Hochbaum, D.S.: Polynomial time algorithms for ratio regions and a variant of normalized cut. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 889–898 (2010)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ivănescu (Hammer), P.L.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13, 388–399 (1965)Google Scholar
  35. 35.
    Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32(4), 833–840 (2003)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Kiers, H.A.L.: A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS. J. Classif. 14(2), 297–310 (1997)CrossRefMATHGoogle Scholar
  38. 38.
    Lee, M., Navarro, D.: Minimum description length and psychological clustering models. In: Grunwald, P., Myung, I., Pitt, M. (eds.) Advances in Minimum Description Length Theory and Applications. Neural Information Processing Series MIT Press, pp. 355–384 (2005). https://mitpress.mit.edu/books/advances-minimum-description-length
  39. 39.
    McCormick, S.T.: Chapter 7. Submodular function minimization. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 321–391. Elsevier, Amsterdam (2005). Version 3a (2008). Available at http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
  40. 40.
    Mirkin, B.G.: Additive clustering and qualitative factor analysis methods for similarity matrice. J. Classif. 4, 7–31 (1987). Erratum, J. Classif. 6, 271–272 (1989)Google Scholar
  41. 41.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)MATHGoogle Scholar
  42. 42.
    Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2, Ser. A), 237–251 (2009)Google Scholar
  43. 43.
    Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0 − 1 programming problems, with applications to graph theory. Networks 12, 141–159 (1982)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Qian, J., Wang, C.A.: How much precision is needed to compare two sums of square roots of integers? Inf. Process. Lett. 100(5), 194–198 (2006)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Radzik, T.: Fractional combinatorial optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1077–1080. Springer, Berlin (2009)CrossRefGoogle Scholar
  46. 46.
    Rhys, J.M.W.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17, 200–207 (1970)CrossRefMATHGoogle Scholar
  47. 47.
    Schaible, S.: Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung. Mathematical Systems in Economics, vol. 42. Verlag Anton Hain, Königstein/Ts. (1978)Google Scholar
  48. 48.
    Schaible, S., Shi, J.: Recent developments in fractional programming: single-ratio and max-min case. In: Nonlinear Analysis and Convex Analysis, pp. 493–506. Yokohama Publishers, Yokohama (2004)Google Scholar
  49. 49.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychol. Rev. 86(2), 87–123 (1979)CrossRefGoogle Scholar
  51. 51.
    Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods, and Applications. Kluwer, Dordrecht (1997)CrossRefMATHGoogle Scholar
  52. 52.
    Stancu-Minasian, I.M.: A sixth bibliography of fractional programming. Optimization 55(4), 405–428 (2006)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305–321 (1978)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Topkis, D.M.: Supermodularity and Complementarity. Frontiers of Economic Research. Princeton University Press, Princeton (1998)Google Scholar
  55. 55.
    Ursulenko, O.: Exact methods in fractional combinatorial optimization. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Texas A&M University (2009)Google Scholar
  56. 56.
    Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow algorithms. Math. Program. 5, 255–266 (1973)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.GERAD, HEC MontréalMontréalCanada

Personalised recommendations