A New Algorithm for Inferring Hybridization Events Based on the Detection of Horizontal Gene Transfers

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)

Abstract

Hybridization and horizontal gene transfer are two major mechanisms of reticulate evolution. Both of them allow for a creation of new species by recombining genes or chromosomes of the existing organisms. An effective detection of hybridization events and estimation of their evolutionary significance have been recognized as main hurdles of the modern computational biology. In this article, we underline common features characterizing horizontal gene transfer and hybridization phenomena and describe a new algorithm for the inference and validation of the diploid hybridization events, when the newly created hybrid has the same number of chromosomes as the parent species. A simulation study was carried out to examine the ability of the proposed algorithm to infer correct hybrids and their parents in various practical situations.

Keywords

Additive tree Phylogenetic tree Horizontal gene transfer Hybridization 

References

  1. 1.
    Albrecht, B., Scornavacca, C., Cenci, A., Huson, D.H.: Fast computation of minimum hybridization networks. Bioinformatics 28, 191–197 (2012)CrossRefGoogle Scholar
  2. 2.
    Arnold, M.L.: Natural hybridization and evolution. Oxford University Press, Oxford (1997)Google Scholar
  3. 3.
    Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Syst. Biol. 55(1), 46–56 (2006)CrossRefGoogle Scholar
  4. 4.
    Barthélemy, J.-P., Guénoche, A.: Trees and proximity representations. Wiley, New York (1991)MATHGoogle Scholar
  5. 5.
    Boc, A., Makarenkov, V.: Towards an accurate identification of mosaic genes and partial horizontal gene transfers. Nucleic Acids Res. 39, e144 (2011)CrossRefGoogle Scholar
  6. 6.
    Boc, A., Philippe, H., Makarenkov, V.: Inferring and validating horizontal gene transfer events using bipartition dissimilarity. Syst. Biol. 59, 195–211 (2010)CrossRefGoogle Scholar
  7. 7.
    Boc, A., Diallo, A.B., Makarenkov, V.: T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(Web Server issue), W573–W579 (2012)Google Scholar
  8. 8.
    Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Ann. Comb. 8, 409–423 (2004)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Charleston, M.A.: Jungle: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149, 191–223 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, p. 502. John Murray, London (1859)Google Scholar
  11. 11.
    Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999)CrossRefGoogle Scholar
  12. 12.
    Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989)Google Scholar
  13. 13.
    Guindon, S., Gascuel, O.: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)CrossRefGoogle Scholar
  14. 14.
    Hallett, M., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: El-Mabrouk, N., Lengauer, T., Sankoff, D., (eds.) Proceedings of the Fifth Annual International Conference on Research in Computational Biology, pp. 149–156. ACM, New York (2001)Google Scholar
  15. 15.
    Hein, J.: A heuristic method to reconstructing the evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200 (1990)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math. 71, 153–169 (1996)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hennig, W.: Phylogenetic systematics (tr. D. Dwight Davis and Rainer Zangerl). University of Illinois Press, Urbana (1966)Google Scholar
  18. 18.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006)CrossRefGoogle Scholar
  19. 19.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press, Cambridge (2011)Google Scholar
  20. 20.
    Joly, S., McLenachan, P.A., Lockhart, P.J.: A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am. Nat. 174, e54–e70 (2009)CrossRefGoogle Scholar
  21. 21.
    Kuhner, M., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11, 459–468 (1994)Google Scholar
  22. 22.
    Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383–397 (1997)CrossRefGoogle Scholar
  23. 23.
    Legendre, P., Makarenkov, V.: Reconstruction of biogeographic and evolutionary networks using reticulograms. Syst. Biol. 51, 199–216 (2002)CrossRefGoogle Scholar
  24. 24.
    Lockhart, P.J., McLenachan, P.A., Havell, D., Gleny, D., Huson, D., Jensen, U.: Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: molecular evidence under split decomposition. Ann. MO Bot. Gard. 88, 458–477 (2001)CrossRefGoogle Scholar
  25. 25.
    Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)CrossRefGoogle Scholar
  26. 26.
    Makarenkov, V., Legendre, P.: From a phylogenetic tree to a reticulated network. J. Comput. Biol. 11, 195–212 (2004)CrossRefGoogle Scholar
  27. 27.
    Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network reconstruction approaches. In: Applied Mycology and Biotechnology. International Elsevier Series, Bioinformatics, vol. 6, pp. 61–97. Elsevier, Amsterdam (2006)Google Scholar
  28. 28.
    Mirkin, B.G., Muchnik, I., Smith, T.F.: A biologically consistent model for comparing molecular phylogenies. J. Comput. Biol. 2, 493–507 (1995)CrossRefGoogle Scholar
  29. 29.
    Mirkin, B.G., Fenner, T.I., Galperin, M.Y., Koonin, E.V.: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 2 (2003)Google Scholar
  30. 30.
    Nakhleh, L., Ruths, D., Wang., L.: RIATA-HGT: a fast and accurate heuristic for reconstructing horizontal gene transfer. In: Proceedings of the 11th International Computing and Combinatorics Conference, Kunming, Yunnan, pp. 84–85 (2005)Google Scholar
  31. 31.
    Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organism and areas. Syst. Biol. 43, 58–77 (1994)Google Scholar
  32. 32.
    Page, R.D.M., Charleston, M.A.: Trees within trees: phylogeny and historical associations. Trends Ecol. Evol. 13, 356–359 (1998)CrossRefGoogle Scholar
  33. 33.
    Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Saitou, N., Nei., M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  35. 35.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco (1973)MATHGoogle Scholar
  36. 36.
    Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)CrossRefGoogle Scholar
  37. 37.
    Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)CrossRefGoogle Scholar
  38. 38.
    von Haeseler, A., Churchill, G.A.: Network models for sequence evolution. J. Mol. Evol. 37, 77–85 (1993)CrossRefGoogle Scholar
  39. 39.
    Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement forests. In: Proceedings of WABI’09, pp. 390–402. Springer, Berlin/Heidelberg (2009)Google Scholar
  40. 40.
    Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT algorithms for computing rooted agreement forests: theory and experiments. In: Festa, P. (ed.) SEA. Lecture Notes in Computer Science, vol. 6049, pp. 14–153. Springer, Berlin (2010)Google Scholar
  41. 41.
    Zhaxybayeva, O., Lapierre, P., Gogarten, J.P.: Genome mosaicism and organismal lineages. Trends Genet. 20, 254–260 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vladimir Makarenkov
    • 1
  • Alix Boc
    • 2
  • Pierre Legendre
    • 2
  1. 1.Département d’InformatiqueUniversité du Québec à MontréalMontréalCanada
  2. 2.Université de MontréalMontréalCanada

Personalised recommendations