Advertisement

Single or Multiple Consensus for Linear Orders

  • Alain GuénocheEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 92)

Abstract

To establish a consensus order, summarizing a profile of linear orders on the same item set is a common problem. It appears in Social Choice Theory, when voters rank candidates in an elective process or in Preference Aggregation, when individuals or criteria put several orders on the items. Often the consensus order is a median order for Kendall’s distance, but other definitions, more easily computable, can be used. In the following, we tackle the question of the quality of this summary by a single consensus order. We study the possibility to represent a given profile by several linear orders making a Multiple Consensus. We introduce an original criterion to measure the quality of the single or multiple consensus, and so to decide if it is preferable to retain one linear order or to adopt several orders making a better representation. Two applications are described; the first one in Agronomy to select varieties according to yield estimations in several trials and the second one is about the event orders along Jesus, life according to the three Gospels of Mark, Luke, and Matthew.

Keywords

Linear orders Consensus Median Preferences Gospels 

References

  1. 1.
    Barthélemy, J.P., Leclerc, B.: The median procedure for partitions. In: Cox, I.J., Hansen, P., Julesz, B. (eds.) Partitioning Data Sets. DIMACS Series in Discrete Mathematics and Theoretical Computer Sciences, vol. 19, pp. 3–34. American Mathematical Society, Providence, Rhode Island (1995)Google Scholar
  2. 2.
    Barthélemy, J.P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1, 235–267 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barthélemy, J.P., Guénoche, A., Hudry, O.: Median linear orders: Heuristics and branch and bound algorithm. Eur. J. Oper. Res. 42, 555–579 (1989)CrossRefGoogle Scholar
  4. 4.
    Charon, I., Guénoche, A., Hudry, O., Woirgard, F.: A Bonsaï Branch and Bound method applied to voting theory. In: Diday, E., et al. (eds.) Proceedings of “Ordinal and Symbolic Data Analysis” (OSDA’95), pp. 309–318. Springer, Berlin (1996)CrossRefGoogle Scholar
  5. 5.
    Diday, E.: Une nouvelle méthode en classification automatique et reconnaissance des formes. Rev. Stat. Appl. 19, 2 (1971)Google Scholar
  6. 6.
    Frey, L.: Analyse ordinale des évangiles synoptiques. Gauthier-Villars, Paris (1972)Google Scholar
  7. 7.
    Guénoche, A.: Un algorithme pour pallier l’effet Condorcet. R.A.I.R.O. Rech. Opér. 11(1), 77–83 (1977)Google Scholar
  8. 8.
    Guénoche, A.: Consensus of partitions: a constructive approach. Adv. Data Anal. Classif. 5(3), 215–229 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Guénoche, A., Vandeputte-Riboud, B., Denis, J.-B.: Selecting varieties using a series of trials and a combinatorial ordering method. Agronomie 14, 363–375 (1994)CrossRefGoogle Scholar
  10. 10.
    Hudry, O.: Recherche d’ordres médians: complexité, algorithmique et problèmes combinatoires. Thèse de l’ENST, Paris (1989)Google Scholar
  11. 11.
    Lemaire, J.: Agrégation typologique de données de préférence. Math. Sci. Hum. 58, 31–50 (1977)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Smith, A.F.M., Payne, C.D.: An algorithm for determining Slater’s i and all nearest adjoining orders. Br. J. Math. Stat. Psychol. 27, 49–52 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.IML - CNRSMarseilleFrance

Personalised recommendations