Oxidative Stress and Lung Cancer

Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Excess amounts of free radicals disturb the homeostatic milieu of the body; these radicals modify cellular macro- and micro-molecules, deregulate intercellular and intracellular signaling and second messenger systems and destroy structural frameworks. This can lead on to cancer initiation, promotion, progression, cell survival, and metastasis. Several products of lipid peroxidation react with DNA molecules to form mutagenic DNA adducts. Cigarette smoking, the most common risk factor of lung cancer, is known to lower normal antioxidant levels. Supplementary treatment with different antioxidants has been tried in several studies. No consistent effect has been shown on either reduction of risk in smokers or mortality of lung cancer.

References

  1. 1.
    Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB (2007) From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol 5(1):25–37PubMedCrossRefGoogle Scholar
  2. 2.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Knaapen AM, Gungor N, Schins RP, Borm PJ, Van Schooten FJ (2006) Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21(4):225–236PubMedCrossRefGoogle Scholar
  4. 4.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  5. 5.
    Padgett EL, Pruett SB (1995) Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology 84(1):135–141PubMedCentralPubMedGoogle Scholar
  6. 6.
    Weinberg JB, Misukonis MA, Shami PJ, Mason SN, Sauls DL, Dittman WA et al (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 86(3):1184–1195PubMedGoogle Scholar
  7. 7.
    Gross A, Dugas N, Spiesser S, Vouldoukis I, Damais C, Kolb JP et al (1998) Nitric oxide production in human macrophagic cells phagocytizing opsonized zymosan: direct characterization by measurement of the luminol dependent chemiluminescence. Free Radic Res 28(2):179–191PubMedCrossRefGoogle Scholar
  8. 8.
    Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017PubMedGoogle Scholar
  9. 9.
    Huffman LJ, Judy DJ, Castranova V (1998) Regulation of nitric oxide production by rat alveolar macrophages in response to silica exposure. J Toxicol Environ Health A 53(1):29–46PubMedCrossRefGoogle Scholar
  10. 10.
    Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109(1):33–44PubMedCrossRefGoogle Scholar
  11. 11.
    Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012:623019PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lowe FJ, Luettich K, Gregg EO (2013) Lung cancer biomarkers for the assessment of modified risk tobacco products: an oxidative stress perspective. Biomarkers 18(3):183–195PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Demetriou CA, Raaschou-Nielsen O, Loft S, Moller P, Vermeulen R, Palli D et al (2012) Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med 69(9):619–627PubMedCrossRefGoogle Scholar
  15. 15.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bruner SD, Norman DP, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403(6772):859–866PubMedCrossRefGoogle Scholar
  17. 17.
    Frenkel K (1992) Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther 53(1):127–166PubMedCrossRefGoogle Scholar
  18. 18.
    Shacter E, Beecham EJ, Covey JM, Kohn KW, Potter M (1988) Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9(12):2297–2304, Epub 1988/12/01PubMedCrossRefGoogle Scholar
  19. 19.
    Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305(2):253–264, Epub 1994/03/01PubMedCrossRefGoogle Scholar
  20. 20.
    Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790PubMedCrossRefGoogle Scholar
  21. 21.
    Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. Bioessays 31(5):492–495PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):7435–7442PubMedCrossRefGoogle Scholar
  24. 24.
    Muller JM, Cahill MA, Rupec RA, Baeuerle PA, Nordheim A (1997) Antioxidants as well as oxidants activate c-fos via Ras-dependent activation of extracellular-signal-regulated kinase 2 and Elk-1. Eur J Biochem 244(1):45–52PubMedCrossRefGoogle Scholar
  25. 25.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMedCrossRefGoogle Scholar
  26. 26.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95(20):11715–11720, Epub 1998/09/30PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18(5):1135–1149, Epub 2000/03/01PubMedGoogle Scholar
  28. 28.
    Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784, Epub 2004/08/12PubMedCrossRefGoogle Scholar
  29. 29.
    North S, Moenner M, Bikfalvi A (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218(1):1–14, Epub 2005/01/11PubMedCrossRefGoogle Scholar
  30. 30.
    Borst P, Jonkers J, Rottenberg S (2007) What makes tumors multidrug resistant? Cell Cycle 6(22):2782–2787PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346PubMedCrossRefGoogle Scholar
  32. 32.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234PubMedGoogle Scholar
  33. 33.
    Voorzanger-Rousselot N, Alberti L, Blay JY (2006) CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways. BMC Cancer 6:75PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ahn KS, Sethi G, Aggarwal BB (2007) Nuclear factor-kappa B: from clone to clinic. Curr Mol Med 7(7):619–637PubMedCrossRefGoogle Scholar
  35. 35.
    Raju U, Gumin GJ, Noel F, Tofilon PJ (1998) IkappaBalpha degradation is not a requirement for the X-ray-induced activation of nuclear factor kappaB in normal rat astrocytes and human brain tumour cells. Int J Radiat Biol 74(5):617–624PubMedCrossRefGoogle Scholar
  36. 36.
    Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352PubMedCrossRefGoogle Scholar
  37. 37.
    Calvert P, Yao KS, Hamilton TC, O’Dwyer PJ (1998) Clinical studies of reversal of drug resistance based on glutathione. Chem Biol Interact 111–112:213–224, Epub 1998/07/29PubMedCrossRefGoogle Scholar
  38. 38.
    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181, Epub 2006/03/07PubMedCrossRefGoogle Scholar
  39. 39.
    Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66(8):1499–1503, Epub 2003/10/14PubMedCrossRefGoogle Scholar
  40. 40.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84, Epub 2006/09/19PubMedCrossRefGoogle Scholar
  41. 41.
    Gaber A, Tamoi M, Takeda T, Nakano Y, Shigeoka S (2001) NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett 499(1–2):32–36, Epub 2001/06/22PubMedCrossRefGoogle Scholar
  42. 42.
    Pham TM, Fujino Y, Nakachi K, Suzuki K, Ito Y, Watanabe Y et al (2009) Relationship between serum levels of superoxide dismutase activity and subsequent risk of cancer mortality: findings from a nested case–control study within the Japan Collaborative Cohort Study. Asian Pac J Cancer Prev 10(suppl):69–73, Epub 2010/07/06PubMedGoogle Scholar
  43. 43.
    Pham TM, Fujino Y, Ando M, Suzuki K, Nakachi K, Ito Y et al (2009) Relationship between serum levels of superoxide dismutase activity and subsequent risk of lung cancer mortality: findings from a nested case–control study within the Japan Collaborative Cohort Study. Asian Pac J Cancer Prev 10(suppl):75–79, Epub 2010/07/06PubMedGoogle Scholar
  44. 44.
    Asami S, Hirano T, Yamaguchi R, Tomioka Y, Itoh H, Kasai H (1996) Increase of a type of oxidative DNA damage, 8-hydroxyguanine, and its repair activity in human leukocytes by cigarette smoking. Cancer Res 56(11):2546–2549, Epub 1996/06/01PubMedGoogle Scholar
  45. 45.
    Pryor WA, Dooley MM, Church DF (1985) Mechanisms of cigarette smoke toxicity: the inactivation of human alpha-1-proteinase inhibitor by nitric oxide/isoprene mixtures in air. Chem Biol Interact 54(2):171–183PubMedCrossRefGoogle Scholar
  46. 46.
    Valavanidis A, Vlachogianni T, Fiotakis K (2009) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6(2):445–462PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A (2008) Pathways connecting inflammation and cancer. Curr Opin Genet Dev 18(1):3–10PubMedCrossRefGoogle Scholar
  48. 48.
    Smith CJ, Perfetti TA, King JA (2006) Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal Toxicol 18(9):667–677PubMedCrossRefGoogle Scholar
  49. 49.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128PubMedCrossRefGoogle Scholar
  50. 50.
    Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 711(1–2):13–27PubMedCrossRefGoogle Scholar
  51. 51.
    Bartsch H, Petruzzelli S, De Flora S, Hietanen E, Camus AM, Castegnaro M et al (1992) Carcinogen metabolism in human lung tissues and the effect of tobacco smoking: results from a case–control multicenter study on lung cancer patients. Environ Health Perspect 98:119–124PubMedCentralPubMedGoogle Scholar
  52. 52.
    Munnia A, Bonassi S, Verna A, Quaglia R, Pelucco D, Ceppi M et al (2006) Bronchial malondialdehyde DNA adducts, tobacco smoking, and lung cancer. Free Radic Biol Med 41(9):1499–1505PubMedCrossRefGoogle Scholar
  53. 53.
    Alberg A (2002) The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180(2):121–137PubMedCrossRefGoogle Scholar
  54. 54.
    Lykkesfeldt J, Viscovich M, Poulsen HE (2003) Ascorbic acid recycling in human erythrocytes is induced by smoking in vivo. Free Radic Biol Med 35(11):1439–1447PubMedCrossRefGoogle Scholar
  55. 55.
    Polidori MC, Mecocci P, Stahl W, Sies H (2003) Cigarette smoking cessation increases plasma levels of several antioxidant micronutrients and improves resistance towards oxidative challenge. Br J Nutr 90(1):147–150, Epub 2003/07/08PubMedCrossRefGoogle Scholar
  56. 56.
    Abou-Seif MA (1996) Blood antioxidant status and urine sulfate and thiocyanate levels in smokers. J Biochem Toxicol 11(3):133–138, Epub 1996/01/01PubMedCrossRefGoogle Scholar
  57. 57.
    Aycicek A, Ipek A (2008) Maternal active or passive smoking causes oxidative stress in cord blood. Eur J Pediatr 167(1):81–85, Epub 2007/02/14PubMedCrossRefGoogle Scholar
  58. 58.
    DiSilvestro RA, Pacht E, Davis WB, Jarjour N, Joung H, Trela-Fulop K (1998) BAL fluid contains detectable superoxide dismutase 1 activity. Chest 113(2):401–404, Epub 1998/03/14PubMedCrossRefGoogle Scholar
  59. 59.
    Greabu M, Totan A, Battino M, Mohora M, Didilescu A, Totan C et al (2008) Cigarette smoke effect on total salivary antioxidant capacity, salivary glutathione peroxidase and gamma-glutamyltransferase activity. Biofactors 33(2):129–136, Epub 2008/01/01PubMedCrossRefGoogle Scholar
  60. 60.
    Harju T, Kaarteenaho-Wiik R, Sirvio R, Paakko P, Crapo JD, Oury TD et al (2004) Manganese superoxide dismutase is increased in the airways of smokers’ lungs. Eur Respir J 24(5):765–771PubMedCrossRefGoogle Scholar
  61. 61.
    Hilbert J, Mohsenin V (1996) Adaptation of lung antioxidants to cigarette smoking in humans. Chest 110(4):916–920, Epub 1996/10/01PubMedCrossRefGoogle Scholar
  62. 62.
    Hulea SA, Olinescu R, Nita S, Crocnan D, Kummerow FA (1995) Cigarette smoking causes biochemical changes in blood that are suggestive of oxidative stress: a case–control study. J Environ Pathol Toxicol Oncol 14(3–4):173–180PubMedGoogle Scholar
  63. 63.
    Orhan H, Evelo CT, Sahin G (2005) Erythrocyte antioxidant defense response against cigarette smoking in humans–the glutathione S-transferase vulnerability. J Biochem Mol Toxicol 19(4):226–233PubMedCrossRefGoogle Scholar
  64. 64.
    Ozguner F, Koyu A, Cesur G (2005) Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 21(1–2):21–26, Epub 2005/07/01PubMedCrossRefGoogle Scholar
  65. 65.
    Pannuru P, Vaddi DR, Kindinti RR, Varadacharyulu N (2011) Increased erythrocyte antioxidant status protects against smoking induced hemolysis in moderate smokers. Hum Exp Toxicol 30(10):1475–1481PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang XY, Tan YL, Zhou DF, Haile CN, Wu GY, Cao LY et al (2007) Nicotine dependence, symptoms and oxidative stress in male patients with schizophrenia. Neuropsychopharmacology 32(9):2020–2024, Epub 2007/01/18PubMedCrossRefGoogle Scholar
  67. 67.
    Kim SH, Kim JS, Shin HS, Keen CL (2003) Influence of smoking on markers of oxidative stress and serum mineral concentrations in teenage girls in Korea. Nutrition 19(3):240–243PubMedCrossRefGoogle Scholar
  68. 68.
    Levin W, Wood AW, Yagi H, Jerina DM, Conney AH (1976) (+/−)-Trans-7,8-dihydroxy-7,8-dihydrobenzo (a)pyrene: a potent skin carcinogen when applied topically to mice. Proc Natl Acad Sci U S A 73(11):3867–3871, Epub 1976/11/01PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Weinstein IB, Jeffrey AM, Jennette KW, Blobstein SH, Harvey RG, Harris C et al (1976) Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science 193(4253):592–595, Epub 1976/08/13PubMedCrossRefGoogle Scholar
  70. 70.
    Wood AW, Wislocki PG, Chang RL, Levin W, Lu AY, Yagi J et al (1976) Mutagenicity and cytotoxicity of benzo(a)pyrene benzo-ring epoxides. Cancer Res 36(9 pt 1):3358–3366, Epub 1976/09/01PubMedGoogle Scholar
  71. 71.
    Gelboin HV (1980) Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 60(4):1107–1166, Epub 1980/10/01PubMedGoogle Scholar
  72. 72.
    Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303(5917):468–472, Epub 1983/06/09PubMedCrossRefGoogle Scholar
  73. 73.
    Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5(2):113–125, Epub 2005/01/22PubMedCrossRefGoogle Scholar
  74. 74.
    Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206(1):73–93, Epub 2005/06/21PubMedCrossRefGoogle Scholar
  75. 75.
    Tchou-Wong KM, Jiang Y, Yee H, LaRosa J, Lee TC, Pellicer A et al (2002) Lung-specific expression of dominant-negative mutant p53 in transgenic mice increases spontaneous and benzo(a)pyrene-induced lung cancer. Am J Respir Cell Mol Biol 27(2):186–193, Epub 2002/08/02PubMedCrossRefGoogle Scholar
  76. 76.
    Dally H, Gassner K, Jager B, Schmezer P, Spiegelhalder B, Edler L et al (2002) Myeloperoxidase (MPO) genotype and lung cancer histologic types: the MPO −463 A allele is associated with reduced risk for small cell lung cancer in smokers. Int J Cancer 102(5):530–535, Epub 2002/11/15PubMedCrossRefGoogle Scholar
  77. 77.
    Le Marchand L, Seifried A, Lum A, Wilkens LR (2000) Association of the myeloperoxidase -463G→ a polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 9(2):181–184, Epub 2000/03/04PubMedGoogle Scholar
  78. 78.
    London SJ, Lehman TA, Taylor JA (1997) Myeloperoxidase genetic polymorphism and lung cancer risk. Cancer Res 57(22):5001–5003, Epub 1997/11/26PubMedGoogle Scholar
  79. 79.
    Lu W, Xing D, Qi J, Tan W, Miao X, Lin D (2002) Genetic polymorphism in myeloperoxidase but not GSTM1 is associated with risk of lung squamous cell carcinoma in a Chinese population. Int J Cancer 102(3):275–279, Epub 2002/10/25PubMedCrossRefGoogle Scholar
  80. 80.
    Schabath MB, Spitz MR, Hong WK, Delclos GL, Reynolds WF, Gunn GB et al (2002) A myeloperoxidase polymorphism associated with reduced risk of lung cancer. Lung Cancer 37(1):35–40, Epub 2002/06/12PubMedCrossRefGoogle Scholar
  81. 81.
    Schabath MB, Spitz MR, Zhang X, Delclos GL, Wu X (2000) Genetic variants of myeloperoxidase and lung cancer risk. Carcinogenesis 21(6):1163–1166, Epub 2000/06/03PubMedCrossRefGoogle Scholar
  82. 82.
    Hiraku Y, Kawanishi S, Ichinose T, Murata M (2010) The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann N Y Acad Sci 1203:15–22, Epub 2010/08/19PubMedCrossRefGoogle Scholar
  83. 83.
    Peddireddy V, Siva Prasad B, Gundimeda SD, Penagaluru PR, Mundluru HP (2012) Assessment of 8-oxo-7, 8-dihydro-2′-deoxyguanosine and malondialdehyde levels as oxidative stress markers and antioxidant status in non-small cell lung cancer. Biomarkers 17(3):261–268, Epub 2012/03/09PubMedCrossRefGoogle Scholar
  84. 84.
    Margaret al, Syahruddin E, Wanandi SI (2011) Low activity of manganese superoxide dismutase (MnSOD) in blood of lung cancer patients with smoking history: relationship to oxidative stress. Asian Pac J Cancer Prev 12(11):3049–3053, Epub 2011/01/01Google Scholar
  85. 85.
    Kontakiotis T, Katsoulis K, Hagizisi O, Kougioulis M, Gerou S, Papakosta D (2011) Bronchoalveolar lavage fluid alteration in antioxidant and inflammatory status in lung cancer patients. Eur J Intern Med 22(5):522–526, Epub 2011/09/20PubMedCrossRefGoogle Scholar
  86. 86.
    Kaynar H, Meral M, Turhan H, Keles M, Celik G, Akcay F (2005) Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett 227(2):133–139, Epub 2005/08/23PubMedCrossRefGoogle Scholar
  87. 87.
    (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med 330(15):1029–1035. Epub 1994/04/14Google Scholar
  88. 88.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A et al (1996) Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 88(21):1550–1559, Epub 1996/11/06PubMedCrossRefGoogle Scholar
  89. 89.
    Cortes-Jofre M, Rueda JR, Corsini-Munoz G, Fonseca-Cortes C, Caraballoso M, Bonfill Cosp X (2012) Drugs for preventing lung cancer in healthy people. Cochrane Database Syst Rev (10):CD002141. Epub 2012/10/19Google Scholar
  90. 90.
    Wu QJ, Xie L, Zheng W, Vogtmann E, Li HL, Yang G et al (2013) Cruciferous vegetables consumption and the risk of female lung cancer: a prospective study and a meta-analysis. Ann Oncol 24(7):1918–1924, Epub 2013/04/05PubMedCrossRefGoogle Scholar
  91. 91.
    Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR et al (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334(18):1145–1149, Epub 1996/05/02PubMedCrossRefGoogle Scholar
  92. 92.
    Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294(1):56–65, Epub 2005/07/07PubMedCrossRefGoogle Scholar
  93. 93.
    Kamangar F, Qiao YL, Yu B, Sun XD, Abnet CC, Fan JH et al (2006) Lung cancer chemoprevention: a randomized, double-blind trial in Linxian, China. Cancer Epidemiol Biomarkers Prev 15(8):1562–1564, Epub 2006/08/10PubMedCrossRefGoogle Scholar
  94. 94.
    Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J et al (2009) Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA 301(1):52–62PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301(1):39–51PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, Touvier M, Favier A, Latino-Martel P et al (2010) Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a postintervention follow-up in the SU.VI.MAX Study. Int J Cancer 127(8):1875–1881PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jindal Chest ClinicsChandigarhIndia
  2. 2.Department of Pulmonary MedicinePostgraduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations