A General Framework for Multiscale Modeling of Tumor–Immune System Interactions

  • Marina Dolfin
  • Mirosław LachowiczEmail author
  • Zuzanna Szymańska
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this paper we review methods that allow the construction of a consistent set of models that may describe the interactions between a tumor and the immune system on microscopic, mesoscopic, and macroscopic scales. The presented structures may be a basis for a description on the sub–cellular, cellular, and macroscopic levels. Important open problems are indicated.


Tumor Immune system Asymptotic analysis Multiscale description Kinetic equations Systems of nonlinear ODEs 



M.D. acknowledges a support from the National Group for Mathematical Physics through the grant Visiting Professors 2013. M.L. acknowledges a support from the National Science Centre of Poland through grant N N201 605640. Z.S. acknowledges a support from the National Science Centre of Poland through grant DEC-2011/01/D/ST1/04133.


  1. 1.
    M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 7(31), 1–22 (2012)Google Scholar
  2. 2.
    L. Arlotti, N. Bellomo, E. De Angelis, M. Lachowicz, Generalized Kinetic Models in Applied Sciences ( World Scienctific, New Jersay (2003)Google Scholar
  3. 3.
    L. Arlotti, N. Bellomo, M. Lachowicz, Kinetic equations modelling population dynamics. Transport Theory Statist. Phys. 29, 125–139 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz, N. Bellomo, On a class of integro–differential equations modeling complex systems with nonlinear interactions. Appl. Math. Lett. 25, 490–495 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Multiscale biological tissue models and flux–limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives. Math. Models Methods Appl. Sci. 22, 1130001 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Modelling chemotaxis from L 2–closure moments in kinetic theory of active particles. Discrete Contin. Dyn. Systems B 18, 847–863 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives. Physics of Life, Reviews 8, 1–18 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Bellomo, G. Forni, Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20, 107–122 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    N. Bellomo, G. Forni, Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems. Math. Models Methods Appl. Sci. 16, 1001–1029 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. Bellomo, D. Knopoff, J. Soler, On the difficult interplay between life, “complexity” and mathematical sciences. Math. Models Methods Appl. Sci. 23, 1861–1913 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Bellomo, M. Lachowicz, J. Polewczak, G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation (World Scientific, Singapore 1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: Selected topics, speculations and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumour evolution and its interaction with immune system. Math. Comput. Model. 32, 413–452 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    N., Bellomo, A. Bellouquid, E. de Angelis, The modelling of immune competition by generalised kinetic (Boltzmann) models: review and research perspectives. Math. Comput. Modelling 37, 65–86 (2003)Google Scholar
  16. 16.
    M., Bodnar, U., Foryś, Z. Szymańska, Model of AIDS–related tumour with time delay, Appl. Math. (Warsaw) 36, 263–278 (2009)Google Scholar
  17. 17.
    V. Capasso, D. Morale, in Rescaling Stochastic Processes: Asymptotics. eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 91–146.Google Scholar
  18. 18.
    Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27, 574–603 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    C. Cercignani, R. Illner, Pulvirenti, M. The Mathematical Theory of Dilute Gases (Springer, New York 1994)Google Scholar
  20. 20.
    N. Champagnat, R. Ferrière, S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Th. Popul. Biol. 69, 297–321 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    N. Champagnat, R. Ferrière, S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution. Stochastic Models 24 2–44 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M.A.J. Chaplain, in Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation, eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 147–200.Google Scholar
  23. 23.
    M.A.J. Chaplain, M. Lachowicz, Z. Szymańska, D. Wrzosek, Mathematical modelling of cancer invasion: The importance of cell–cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 24, 719–743 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Cobbold, H. De La Pea, A. Norris, J.M. Polefrone, J. Qian, A.M. English, K.L. Cummings, S. Penny, J.E. Turner, J. Cottine, J.G. Abelin, S.A. Malaker, A.L. Zarling, H.W. Huang, O. Goodyear, S.D. Freeman, J. Shabanowitz, G. Pratt, C. Craddock, M.E Williams, D.F. Hunt, V.H. Engelhard, MHC Class I-Associated Phosphopeptides Are the Targets of Memory-like Immunity in Leukemia. Sci. Transl. Med. 203, 203–125 (2013)Google Scholar
  25. 25.
    Criaco, D., Dolfin, M.,. Restuccia, L: Approximate smooth solution pf a mathematical model for the activation and clonal expansion of T cells. Math. Biosci. Engineer. 10, 59–73 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    D. Criaco, M. Dolfin, A phenomenological approach to the dynamics of activation and clonal expansion of T cells. Math. Computer Model. 53, 314–329 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. d’Onofrio, A general framework for modeling tumour–immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 220–235 (2005)Google Scholar
  28. 28.
    d’Onofrio, A.: Tumor–immune system interaction: modeling the tumor–stimulated proliferation of effectors and immunotherapy. Math. Models Methods Appl. Sci. 16, 1375–1401 (2006)Google Scholar
  29. 29.
    A. d’Onofrio, Tumor evasion from immune control: Strategies of a MISS to become a MASS. Chaos, Solitons and Fractals 31, 261–268 (2007)Google Scholar
  30. 30.
    A. d’Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47,614–637 (2008)Google Scholar
  31. 31.
    A. d’Onofrio, F. Gatti, P. Cerrai, L. Freschi, Delay–induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010)Google Scholar
  32. 32.
    A. d’Onofrio, A. Ciancio, Simple biophysical model of tumor evasion from immune system control. Phys Rev E Stat Nonlin Soft Matter Phys. 84 (2011)Google Scholar
  33. 33.
    P. Ehrlich, Über den jetzigen Stand der Karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909)Google Scholar
  34. 34.
    A. Eibeck, W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations. Annals Appl. Prob. 13, 845–889 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S.N., Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence. Wiley, New York (1986)Google Scholar
  36. 36.
    D., Finkelshtein, Y., Kondratiev, O. Kutoviy, Semigroup approach to birth–and–death stochastic dynamics in continuum. J. Funct. Anal. 262, 1274–1308 (2012)Google Scholar
  37. 37.
    A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theoret. Biol. 250, 684–704 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Gołab, M. Jakóbisiak, W. Lasek (eds.), Immunologia, Wydawnictwo Naukowe PWN, Warszawa (2002), in PolishGoogle Scholar
  39. 39.
    D., Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)Google Scholar
  40. 40.
    H.L. Hartwell, J.J. Hopfield, S. Leibner, A.W. Murray, From molecular to modular cell biology. Nature 402, c47–c52 (1999)CrossRefGoogle Scholar
  41. 41.
    R. B. Herberman (ed.), NK Cells and Other Natural Effector Cells (Academic Press, New York 1982)Google Scholar
  42. 42.
    C.A. Janeway, P. Travers, M. Walport, Immunobiology: The Immune System in Health and Disease ( Garland Science, New York 2001)Google Scholar
  43. 43.
    B., Joshi, X., Wang, S., Banerjee, H., Tian, A., Matzavinos, M.A.J. Chaplain, On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J. Theor. Biol. 259, 820–827 (2009)Google Scholar
  44. 44.
    D., Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor - immune interaction. J. Math. Biol. 37, 235–252 (1998)Google Scholar
  45. 45.
    V.A., Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumours: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)Google Scholar
  46. 46.
    M. Lachowicz, in Links between microscopic and macroscopic descriptions eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math vol. 1940, (Springer, Berlin 2008) pp. 201–268Google Scholar
  47. 47.
    Lachowicz, M.: in Towards microscopic and nonlocal models of tumour invasion of tissue eds. by In: N. Bellomo, M. Chaplain, E. De Angelis, ( Birkhauser, Boston 2008) pp. 49–63.Google Scholar
  48. 48.
    M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems. Prob. Engin. Mech. 26, 54–60 (2011)CrossRefGoogle Scholar
  49. 49.
    Lachowicz, M.: Individually–based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Analysis Real World Appl. 12, 2396–2407 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    M. Lachowicz, A. Quartarone, A general framework for modeling tumor–immune system competition at the mesoscopic level. Appl. Math. Letters 25, 2118–2122 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Lachowicz, M., Quartarone, A., Ryabukha, T.V.: Stability of solutions of kinetic equations corresponding to the replicator dynamics, Kinetic Relat. Models (to appear)Google Scholar
  52. 52.
    M. Lachowicz, T.V. Ryabukha, Equilibrium solutions for microscopic stochastic systems in population dynamics. Math. Biosci. Engin. 10, 777–786 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    M.Lachowicz, D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit. Math. Models Methods Appl. Sci. 11, 1375–1390 (2001)Google Scholar
  54. 54.
    O. Lejeune, M.A.J. Chaplain, I. El Akili, Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours. Math. Comput. Modelling 47 649–662 (2008)Google Scholar
  55. 55.
    G.W. Litman, J.P., Cannon, L.J. Dishaw, Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 5, 866–879 (2005)Google Scholar
  56. 56.
    A. Matzavinos, M.A.J. Chaplain, Travelling wave analysis of a model of the immune response to cancer. Biologies 327, 995–1008 (2004)CrossRefGoogle Scholar
  57. 57.
    A. Matzavinos, M.A.J. Chaplain, V. Kuznetsov, Mathematical modelling of the spatio–temporal response of cytotoxic T–lymphocytes to a solid tumour. Math. Med. Biol. 21, 1–34 (2004)CrossRefzbMATHGoogle Scholar
  58. 58.
    G. Mayer,Microbiology and Immunology On–Line Textbook (USC School of Medicine, 2006)Google Scholar
  59. 59.
    D. Morale, V. Capasso, K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations. J. Math. Biol. 50, 49–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    M.R. Owen, J.A. Sherratt, Pattern formation and spatiotemporal irregularity in a model for macrophage–tumour interaction. J. Theor. Biol. 189, 63–80 (1997)CrossRefGoogle Scholar
  61. 61.
    L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell–mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005)Google Scholar
  62. 62.
    A. Quartarone, Stability of solutions of some mesoscopic equations in Biomathematics. Ph.D. Thesis. University of Messina. Department of Mathematics and Informatics. Messina (2013)Google Scholar
  63. 63.
    L. Saint–Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1 Lecture Notes Mathematics, vol. 1971, (Springer, Berlin 2009)Google Scholar
  64. 64.
    Z. Szymańska, Analysis of immunotherapy models in the context of cancer dynamics. Int. J. Appl. Math. Comput. Sci. 13, 407–418 (2003)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Z. Szymańska, C. Morales Rodrigo, M., Lachowicz, M.A.J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)Google Scholar
  66. 66.
    M.W. Teng, J.B. Swann, C.M. Koebel, R.D. Schreiber, M.J. Smyth, Immune–mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–983 (2008)CrossRefGoogle Scholar
  67. 67.
    C.M. Vajdic, van Leeuwen, M.T.: Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer. 125, 1747–1754 (2009)Google Scholar
  68. 68.
    W. Wagner, A functional law of large numbers for Boltzmann type stochastic particle systems. Stochastic Anal. Appl. 14, 591–636 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    R.A. Weinberg, The Biology of Cancer. Garland Sciences (Taylor & Francis Group, New York 2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marina Dolfin
    • 1
  • Mirosław Lachowicz
    • 2
    Email author
  • Zuzanna Szymańska
    • 3
  1. 1.Department of Civil, Computer, Construction and Environmental Engineering and of Applied Mathematics (DICIEAMA)University of Messina, Contrada Di DioMessinaItaly
  2. 2.Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  3. 3.ICMUniversity of WarsawWarsawPoland

Personalised recommendations