Advertisement

Sensor Data Streams

  • Stephen Voida
  • Donald J. Patterson
  • Shwetak N. Patel
Chapter

Abstract

It is possible today to collect streams of data from sensors in the environment (e.g., on walls of buildings) or attached to individuals (e.g., badges that record location and with whom one is speaking). The data from these sensors allows researchers to trace people’s behavior with and without various technology interventions or incentives intended to change behavior. These traces can also be used inside technologies, for example to sense when it is a good time to interrupt a person with a message.

Keywords

Data Stream Sensor Data Ubiquitous Computing Gesture Recognition Experience Sampling Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., & Pinkerton, M. (1997, October). CyberGuide: A mobile context-aware tour guide. Wireless Networks, 3(5), 421–433.Google Scholar
  2. Bailey, B. P., & Iqbal, S. T. (2008). Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Transactions on Computer-Human Interaction, 14(4), 1–28.CrossRefGoogle Scholar
  3. Bailey, B. P., & Konstan, J. A. (2006). On the need for attention-aware systems: Measuring effects of interruption on task performance, error rate, and affective state. Computers in Human Behavior, 22(4), 685–708.CrossRefGoogle Scholar
  4. Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001). The effects of interruptions on task performance, annoyance, and anxiety in the user interface. In Proceedings of the IFIP TC.13 international conference on human-computer interaction (INTERACT ’01) (pp. 593–601). Amsterdam: Ios Press.Google Scholar
  5. Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.CrossRefGoogle Scholar
  6. Bao, L., & Intille, S. (2004). Activity recognition from user-annotated acceleration data. In Proceedings of the second international conference on pervasive computing (PERVASIVE 2004) (pp. 1–17). Berlin: Springer.Google Scholar
  7. Begole, J., & Tang, J. C. (2007). Incorporating human and machine interpretation of unavailability and rhythm awareness into the design of collaborative applications. Human–Computer Interaction, 22(1), 7–45.Google Scholar
  8. Begole, J., Tang, J. C., Smith, R. B., & Yankelovich, N. (2002). Work rhythms: Analyzing visualizations of awareness histories of distributed groups. In Proceedings of the 2002 ACM conference on computer supported cooperative work (CSCW ’02) (pp. 334–343). New Orleans, LA: ACM Press.CrossRefGoogle Scholar
  9. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F. A., & Tanca, L. (2007). A data-oriented survey of context models. SIGMOD Record, 36(4), 19–26.CrossRefGoogle Scholar
  10. Brdiczka, O., Su, N. M., & Begole, J. B. (2010). Temporal task footprinting: Identifying routine tasks by their temporal patterns. In Proceedings of the 14th international conference on intelligent user interfaces (IUI ’10) (pp. 281–284). New York, NY: ACM Press.CrossRefGoogle Scholar
  11. Brumitt, B., Meyers, B., Krumm, J., Kern, A., & Shafer, S. (2000). EasyLiving: Technologies for intelligent environments. In Proceedings of the second international symposium on handheld and ubiquitous computing (HUC ’00) (pp. 97–119). Berlin: Springer.Google Scholar
  12. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., et al. (2008). The mobile sensing platform: An embedded activity recognition system. IEEE Pervasive Computing, 7(2), 32–41.CrossRefGoogle Scholar
  13. Choudhury, T., & Pentland, A. (2003). Sensing and modeling human networks using the sociometer. In Proceedings of the seventh IEEE international symposium on wearable computers (ISWC ’03) (pp. 216–222). Los Alamitos, CA: IEEE Computer Society.CrossRefGoogle Scholar
  14. Cohn, G., Gupta, S., Froehlich, J., Larson, E., & Patel, S. N. (2010). GasSense: Appliance-level, single-point sensing of gas activity in the home. In Proceedings of 8th international conference on pervasive computing (PERVASIVE 2010) (pp. 265–282). Berlin: Springer.Google Scholar
  15. Cohn, G., Stuntebeck, E., Pandey, J., Otis, B., Abowd, G. D., & Patel, S. N. (2010). SNUPI: Sensor nodes utilizing powerline infrastructure. In Proceedings of the 12th international conference on ubiquitous computing (UbiComp 2010) (pp. 159–168). New York, NY: ACM Press.CrossRefGoogle Scholar
  16. Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich, J., LeGrand, L., et al. (2008). Flowers or a robot army?: Encouraging awareness & activity with personal, mobile displays. In Proceedings of the 10th international conference on ubiquitous computing (UbiComp ’08) (pp. 54–63). New York, NY: ACM Press.CrossRefGoogle Scholar
  17. Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich, J., Harrison, B., et al. (2008). Activity sensing in the wild: A field trial of ubifit garden. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’08) (pp. 1797–1806). New York, NY: ACM Press.Google Scholar
  18. Consolvo, S., & Walker, M. (2003). Using the experience sampling method to evaluate ubicomp applications. IEEE Pervasive Computing, 2(2), 24–31.CrossRefGoogle Scholar
  19. Dahlbäck, N., Jönsson, A., & Ahrenberg, L. (1993). Wizard of Oz studies: Why and how. In Proceedings of the 1st international conference on intelligent user interfaces (IUI ’93) (pp. 193–200). New York, NY: ACM Press.CrossRefGoogle Scholar
  20. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.zbMATHGoogle Scholar
  21. Dey, A. K., & Abowd, G. D. (2001). A conceptual framework and a toolkit for supporting rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2–4), 7–166.Google Scholar
  22. Dey, A., Wac, K., Ferreira, D., Tassini, K., Hong, J., & Ramos, J. (2011). Getting closer: An empirical investigation of the proximity of user to their smart phones. In Proceedings of the 13th international conference on ubiquitous computing (UbiComp ’11) (pp. 163–172). New York, NY: ACM Press.CrossRefGoogle Scholar
  23. Domingos, P. (2012, October). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87.Google Scholar
  24. Fan, M., Gravem, D., Cooper, D. M., & Patterson, D. J. (2012). Augmenting gesture recognition with erlang-cox models to identify neurological disorders in premature babies. In Proceedings of the 2012 ACM conference on ubiquitous computing (UbiComp ‘12) (pp. 411–420). New York, NY: ACM Press.Google Scholar
  25. Fogarty, J., Hudson, S. E., Atkeson, C. G., Avrahami, D., Forlizzi, J., Kiesler, S., et al. (2005). Predicting human interruptibility with sensors. ACM Transactions on Computer-Human Interaction, 12(1), 119–146.CrossRefGoogle Scholar
  26. Fox, D., Hightower, J., Kautz, H., Liao, L., & Patterson, D. J. (2003). Bayesian techniques for location estimation. In M. Hazas, J. Scott, & J. Krumm (Eds.), Research paper presented at the 2003 Workshop on Location-Aware Computing, held in conjunction with the Fifth International Conference on Ubiquitous Computing (UbiComp 2003), Seattle, WA, USA, October 12, 2003.Google Scholar
  27. Froehlich, J. E., Larson, E., Campbell, T., Haggerty, C., Fogarty, J., & Patel, S. N. (2009). HydroSense: Infrastructure-mediated single-point sensing of whole-home water activity. In Proceedings of the 11th international conference on ubiquitous computing (Ubicomp 2009) (pp. 235–244). New York, NY: ACM Press.Google Scholar
  28. Froehlich, J., Larson, E., Saba, E., Campbell, T., Atlas, L., Fogarty, J., et al. (2011). A longitudinal study of pressure sensing to infer real-world water usage events in the home. In Proceedings of the 9th international conference on pervasive computing (PERVASIVE 2011) (pp. 50–69). Berlin: Springer.Google Scholar
  29. Greenberg, S., & Fitchett, C. (2001). Phidgets: Each development of physical interfaces through physical widgets. In Proceedings of the 14th annual ACM symposium on user interface software and technology (UIST 2001) (pp. 209–218). New York, NY: ACM Press.CrossRefGoogle Scholar
  30. Gupta, S., Reynolds, M. S., & Patel, S. N. (2010). ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In Proceedings of the 12th international conference on ubiquitous computing (UbiComp 2010) (pp. 139–148). New York, NY: ACM Press.CrossRefGoogle Scholar
  31. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. SIGKDD Explorations, 11(1), 10–18.CrossRefGoogle Scholar
  32. Hightower, J., (2003). From position to place. Research paper presented at the 2003 Workshop on Location-Aware Computing, held in conjunction with the Fifth International Conference on Ubiquitous Computing (UbiComp 2003), Seattle, WA, USA, October 12, 2003.Google Scholar
  33. Hightower, J. & Borriello, G. (2001). A survey and taxonomy of location systems for ubiquitous computing. Technical Report UW-CSE-01-08-03, Intel Research Seattle and the University of Washington, Seattle, WA.Google Scholar
  34. Hightower, J. & Borriello, G. (2001, August). Location systems for ubiquitous computing. IEEE Computer, 34(8), 57–66.Google Scholar
  35. Hong, J.-H., Suh, E., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509–8522.CrossRefGoogle Scholar
  36. Hornecker, E., & Nicol, E. (2012). What do lab-based user studies tell us about in-the-wild behavior? Insights from a study of museum interactives. In Proceedings of the ACM conference on designing interactive systems (DIS ’12) (pp. 358–367). New York, NY: ACM Press.CrossRefGoogle Scholar
  37. Horvitz, E., Koch, P., & Apacible, J. (2004). BusyBody: Creating and fielding personalized models of the cost of interruption. In Proceedings of the ACM conference on computer supported cooperative work (CSCW ’04) (pp. 507–510). New York, NY: ACM Press.Google Scholar
  38. Hutchings, D. R., Smith, G., Meyers, B., Czerwinski, M., & Robertson, G. (2004). Display space usage and window management operation comparisons between single monitor and multiple monitor users. In Proceedings of the working conference on advanced visual interfaces (AVI ’04) (pp. 32–39). New York, NY: ACM Press.CrossRefGoogle Scholar
  39. Hutchinson, H., Mackay, W., Westerlund, B., Bederson, B. B., Druin, A., Plaisant, C., et al. (2003). Technology probes: Inspiring design for and with families. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’03) (pp. 17–24). New York, NY: ACM Press.Google Scholar
  40. Intille, S. S. (2002). Designing a home of the future. IEEE Pervasive Computing, 1(2), 76–82.CrossRefGoogle Scholar
  41. Intille, S., Larson, K., Tapia, E., Beaudin, J., Kaushik, P., Nawyn, J., et al. (2006). Using a live-in laboratory for ubiquitous computing research. In Proceedings of the 4th international conference on pervasive computing (PERVASIVE 2006) (pp. 349–365). Berlin: Springer.Google Scholar
  42. Intille, S. S., Rondoni, J., Kukla, C., Ancona, I., & Bao, L. (2003). A context-aware experience sampling tool. In Extended abstracts of the SIGCHI conference on human factors in computing systems (CHI ’03) (pp. 972–973). New York, NY: ACM Press.CrossRefGoogle Scholar
  43. Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., et al. (2012). Human mobility modeling at metropolitan scales. In Proceedings of the 10th international conference on mobile systems, applications, and services (MobiSys ’12) (pp. 239–252). New York, NY: ACM Press.CrossRefGoogle Scholar
  44. Kaptelinin, V. (2003). UMEA: Translating interaction histories into project contexts. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’03) (pp. 353–360). New York, NY: ACM Press.Google Scholar
  45. Kidd, C., Orr, R., Abowd, G., Atkeson, C., Essa, I., MacIntyre, B., et al. (1999). The aware home: A living laboratory for ubiquitous computing research. In Proceedings of the second international workshop on cooperative buildings (CoBuild ’99) (pp. 191–198). Berlin: Springer.Google Scholar
  46. Kientz, J. A., Patel, S. N., Jones, B., Price, E., Mynatt, E. D., & Abowd, G. D. (2008). The Georgia Tech aware home. In Extended abstracts of the SIGCHI conference on human factors in computing systems (CHI 2008) (pp. 3675–3680). New York, NY: ACM Press.Google Scholar
  47. Klasnja, P., Consolvo, S., Choudhury, T., Beckwith, R., & Hightower, J. (2009). Exploring privacy concerns about personal sensing. In Proceedings of the 7th international conference on pervasive computing (PERVASIVE 2009) (pp. 176–183). Berlin: Springer.Google Scholar
  48. Krumm, J. (2010). Processing sequential sensor data. In J. Krumm (Ed.), Ubiquitous computing fundamentals (pp. 286–319). Boca Raton, FL: CRC Press.Google Scholar
  49. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., et al. (2005). Place Lab: Device positioning using radio beacons in the wild. In Proceedings of the third international conference on pervasive computing (PERVASIVE 2005) (pp. 301–306). Berlin: Springer.Google Scholar
  50. Langheinrich, M. (2010). Privacy in ubiquitous. In J. Krumm (Ed.), Ubiquitous computing fundamentals (pp. 286–319). Boca Raton, FL: CRC Press.Google Scholar
  51. Langley, P. (2000). Crafting papers on machine learning. In Proceedings of the seventeenth international conference on machine learning (ML ’00) (pp. 1207–1211). Stanford, CA: Morgan Kaufmann.Google Scholar
  52. Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling method. New Directions for Methodology of Social and Behavioral Science, 15, 41–56.Google Scholar
  53. Liao, L., Patterson, D. J., Fox, D., & Kautz, H. (2006, December). Building personal maps from GPS data. Annals of the New York Academy of Sciences, 1093, 249–265.Google Scholar
  54. Liao, L., Patterson, D. J., Fox, D., & Kautz, H. (2007, January). Learning and inferring transportation routines. Artificial Intelligence, 171, 311–331.Google Scholar
  55. MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M., Tullio, J., & Corso, G. M. (2001). Support for multitasking and background awareness using interactive peripheral displays. In Proceedings of the 14th annual ACM symposium on user interface software and technology (UIST ’01) (pp. 41–50). New York, NY: ACM Press.CrossRefGoogle Scholar
  56. Mark, G. J., Voida, S., & Cardello, A. V. (2012). “A pace not dictated by electrons”: An empirical study of work without email. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI 2012) (pp. 555–564). New York, NY: ACM Press.Google Scholar
  57. Marmasse, N., & Schmandt, C. (2000). Location-aware information delivery with ComMotion. In Proceedings of the 2nd international symposium on handheld and ubiquitous computing (HUC ’00) (pp. 157–171). London: Springer.CrossRefGoogle Scholar
  58. Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., et al. (2008). Sensing meets mobile social networks: The design, implementation and evaluation of the CenseMe application. In Proceedings of the 6th ACM conference on embedded network sensor systems (SenSys ’08) (pp. 337–350). New York, NY: ACM Press.CrossRefGoogle Scholar
  59. Monibi, M., & Patterson, D. (2009). Getting places: Collaborative predictions from status. In Proceedings of the European conference on ambient intelligence (AmI 2009) (pp. 60–65). Berlin: Springer.CrossRefGoogle Scholar
  60. Mynatt, E. D., Rowan, J., Craighill, S., & Jacobs, A. (2001). Digital family portraits: Supporting peace of mind for extended family members. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI 2001) (pp. 333–340). New York, NY: ACM Press.CrossRefGoogle Scholar
  61. Nair, R., Voida, S., & Mynatt, E. D. (2005). Frequency-based detection of task switches. In Proceedings of the 19th annual conference of the British HCI group (HCI 2005) (pp. 94–99). Berlin: Springer.Google Scholar
  62. Olguín, D. O., & Pentland, A. (2008). Social sensors for automatic data collection. In Proceedings of the 14th annual Americas conference on information systems (AMCIS 2008) (p. Paper 171). Atlanta, GA: Association for Information Systems.Google Scholar
  63. Olguín, D. O., Waber, B. N., Kim, T., Mohan, A., Ara, K., & Pentland, A. (2009). Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE Trans. On Systems, Man, and Cybernetics – Part B: Cybernetics, 39(1), 12 pages.CrossRefGoogle Scholar
  64. Orr, R. J., & Abowd, G. D. (1999). The smart floor: A mechanism for natural user identification and tracking. In Extended abstracts of the SIGCHI conference on human factors in computing systems (CHI 1999) (pp. 275–276). New York, NY: ACM Press.Google Scholar
  65. Patel, S. N., Kientz, J. A., Hayes, G. R., Bhat, S., & Abowd, G. D. (2006). Farther than you may think: An empirical investigation of the proximity of users to their mobile phones. In Proceedings of the 8th international conference on ubiquitous computing (UbiComp 2006) (pp. 123–140). Berlin: Springer.CrossRefGoogle Scholar
  66. Patel, S. N., Reynolds, M. S., & Abowd, G. D. (2008). Detecting human movement by differential air pressure sensing in HVAC system ductwork: An exploration in infrastructure mediated sensing. In Proceedings of the 7th international conference on pervasive computing (PERVASIVE 2008) (pp. 1–18). Berlin: Springer.Google Scholar
  67. Patel, S. N., Robertson, T., Kientz, J. A., Reynolds, M. S., & Abowd, G. D. (2007). At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In Proceedings of the 9th international conference on ubiquitous computing (UbiComp 2007) (pp. 271–288). Berlin: Springer.CrossRefGoogle Scholar
  68. Patel, S. N., Truong, K. N., & Abowd, G. D. (2006). PowerLine positioning: A practical sub-room-level indoor location system for domestic use. In Proceedings of the 8th international conference on ubiquitous computing (UbiComp 2006) (pp. 441–458). Berlin: Springer.CrossRefGoogle Scholar
  69. Patterson, D. J. (2009). Global priors of place and activity tags. In Proceedings of the AAAI spring symposium on human behavior modeling (pp. 75–79). Palo Alto, CA: AAAI Press.Google Scholar
  70. Patterson, D. J., Baker, C., Ding, X., Kaufman, S. J., Liu, K., & Zaldivar, A. (2008). Online everywhere: Evolving mobile instant messaging practices. In Proceedings of the 10th international conference on ubiquitous computing (UbiComp ’08) (pp. 64–73). New York, NY: ACM Press.CrossRefGoogle Scholar
  71. Patterson, D. J., Ding, X., Kaufman, S. J., Liu, K., & Zaldivar, A. (2009). An ecosystem for learning and using sensor-driven IM status messages. IEEE Pervasive Computing, 8(4), 42–49.CrossRefGoogle Scholar
  72. Patterson, D. J., Fox, D., Kautz, H., & Philipose, M. (2005). Fine-grained activity recognition by aggregating abstract object usage. In Proceedings of the ninth IEEE international symposium on wearable computers (ISWC ’05) (pp. 44–51). Los Alamitos, CA: IEEE Computer Society.CrossRefGoogle Scholar
  73. Patterson, D., Liao, L., Fox, D., & Kautz, H. (2003). Inferring high-level behavior from low-level sensors. In Proceedings of the 5th international conference on ubiquitous computing (UbiComp 2003) (pp. 73–89). Berlin: Springer.CrossRefGoogle Scholar
  74. Perkowitz, M., Philipose, M., Fishkin, K., & Patterson, D. J. (2004). Mining models of human activities from the web. In Proceedings of the 13th international conference on World Wide Web (WWW ’04) (pp. 573–582). New York, NY: ACM Press.CrossRefGoogle Scholar
  75. Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., et al. (2004). Inferring activities from interactions with objects. IEEE Pervasive Computing, 3(4), 50–57.CrossRefGoogle Scholar
  76. Poh, M.-Z., Swenson, N. C., & Picard, R. W. (2010). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57(5), 1243–1252.CrossRefGoogle Scholar
  77. Rowan, J., & Mynatt, E. D. (2005). Digital family portrait field trial: Support for aging in place. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI 2005) (pp. 521–530). New York, NY: ACM Press.CrossRefGoogle Scholar
  78. Salber, D., Dey, A. K., & Abowd, G. D. (1999). The context toolkit: Aiding the development of context-aware applications. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI 1999) (pp. 434–441). New York, NY: ACM Press.Google Scholar
  79. Sparacino, F. (2003). Sto(ry)chastics: A Bayesian network architecture for user modeling and computational storytelling for interactive spaces. In Proceedings of the 5th international conference on ubiquitous computing (UbiComp 2003) (pp. 54–72). Berlin: Springer.CrossRefGoogle Scholar
  80. Stone, A. A., Shiffman, S. S., & DeVries, M. W. (1999). Ecological momentary assessment. In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well-being: The foundations of hedonic psychology (pp. 26–39). New York, NY: Russell Sage.Google Scholar
  81. Stumpf, S., Bao, X., Dragunov, A., Dietterich, T. G., Herlocker, J., Johnsrude, K., Li, L., & Shen, J. (2005). Predicting user tasks: I know what you’re doing! Research paper presented at the 20th national conference on artificial intelligence (AAAI-05) workshop on human comprehensible machine learning, Pittsburgh, PA, USA, July 9–13.Google Scholar
  82. Tang, J., & Patterson, D. (2010). Twitter, sensors and UI: Robust context modeling for interruption management. In Proceedings of the 18th international conference on user modeling, adaptation, and personalization (UMAP 2010) (pp. 123–134). Berlin: Springer.CrossRefGoogle Scholar
  83. Tapia, E., Intille, S., & Larson, K. (2004). Activity recognition in the home using simple and ubiquitous sensors. In Proceedings of the second international conference on pervasive computing (PERVASIVE 2004) (pp. 158–175). Berlin: Springer.Google Scholar
  84. Varshavsky, A., & Patel, S. (2009). Location in ubiquitous computing. In J. Krumm (Ed.), Ubiquitous computing fundamentals (pp. 286–319). Boca Raton, FL: CRC Press.Google Scholar
  85. Villar, N., Scott, J., & Hodges, S. (2011). Prototyping with .NET Gadgeteer. In Proceedings of the 5th international conference on tangible, embedded, and embodied interaction (TEI 2011) (pp. 377–380). New York, NY: ACM Press.CrossRefGoogle Scholar
  86. Want, R., Hopper, A., Falcão, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems, 10(1), 91–102.CrossRefGoogle Scholar
  87. Ward, J. A., Lukowicz, P., & Gellersen, H. W. (2011). Performance metrics for activity recognition. ACM Transactions on Intelligent Systems and Technology, 2(1), Article 6.CrossRefGoogle Scholar
  88. Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.CrossRefGoogle Scholar
  89. Westyn, T., Brashear, H., Atrash, A., & Starner, T. (2003). Georgia tech gesture toolkit: Supporting experiments in gesture recognition. In Proceedings of the 5th international conference on multimodal interfaces (ICMI ’03) (pp. 85–92). New York, NY: ACM Press.CrossRefGoogle Scholar
  90. Wyatt, D., Choudhury, T., Bilmes, J., & Kitts, J. A. (2011). Inferring colocation and conversation networks from privacy-sensitive audio with implications for computational social science. ACM Transactions on Intelligent Systems and Technology, 2(1), Article 7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stephen Voida
    • 1
  • Donald J. Patterson
    • 2
  • Shwetak N. Patel
    • 3
  1. 1.Indiana University School of Informatics and Computing, Indianapolis (IUPUI)IndianapolisUSA
  2. 2.Donald Bren School of Information and Computer Sciences, University of California, IrvineIrvineUSA
  3. 3.Department of Computer Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations