Advertisement

Geometric Semantic Genetic Programming for Real Life Applications

  • Leonardo VanneschiEmail author
  • Sara Silva
  • Mauro Castelli
  • Luca Manzoni
Chapter
Part of the Genetic and Evolutionary Computation book series (GEVO)

Abstract

In a recent contribution we have introduced a new implementation of geometric semantic operators for Genetic Programming. Thanks to this implementation, we are now able to deeply investigate their usefulness and study their properties on complex real-life applications. Our experiments confirm that these operators are more effective than traditional ones in optimizing training data, due to the fact that they induce a unimodal fitness landscape. Furthermore, they automatically limit overfitting, something we had already noticed in our recent contribution, and that is further discussed here. Finally, we investigate the influence of some parameters on the effectiveness of these operators, and we show that tuning their values and setting them “a priori” may be wasted effort. Instead, if we randomly modify the values of those parameters several times during the evolution, we obtain a performance that is comparable with the one obtained with the best setting, both on training and test data for all the studied problems.

Keywords

Geometric semantic operators Fitness landscapes Overfitting Parameter tuning 

Notes

Acknowledgements

This work was supported by national funds through FCT under contract PEst-OE/EEI/LA0021/2013 and by projects EnviGP (PTDC/EIA-CCO/103363/2008), MassGP (PTDC/EEI-CTP/2975/2012) and InteleGen (PTDC/DTP-FTO/1747/2012), Portugal.

References

  1. Archetti F, Lanzeni S, Messina E, Vanneschi L (2007) Genetic programming for computational pharmacokinetics in drug discovery and development. Genet Program Evolvable Mach 8:413–432CrossRefGoogle Scholar
  2. Beadle L, Johnson C (2008) Semantically driven crossover in genetic programming. In: Wang J (ed) Proceedings of the IEEE world congress on computational intelligence, Hong Kong. IEEE Computational Intelligence Society/IEEE, pp 111–116. doi:10.1109/CEC.2008.4630784Google Scholar
  3. Beadle L, Johnson CG (2009) Semantically driven mutation in genetic programming. In: Tyrrell A (ed) 2009 IEEE congress on evolutionary computation, Trondheim. IEEE Computational Intelligence Society/IEEE, pp 1336–1342. doi:10.1109/CEC.2009.4983099CrossRefGoogle Scholar
  4. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, CambridgezbMATHGoogle Scholar
  5. Krawiec K (2012) Medial crossovers for genetic programming. In: Moraglio A, Silva S, Krawiec K, Machado P, Cotta C (eds) Proceedings of the 15th European conference on genetic programming, EuroGP 2012, Malaga. Lecture notes in computer science, vol 7244. Springer, pp 61–72. doi:10.1007/978-3-642-29139-5-6Google Scholar
  6. McPhee NF, Ohs B, Hutchison T (2008) Semantic building blocks in genetic programming. In: Proceedings of the 11th European conference on genetic programming, EuroGP’08, Naples. Springer, Berlin/Heidelberg, pp 134–145Google Scholar
  7. Moraglio A, Krawiec K, Johnson CG (2012) Geometric semantic genetic programming. In: Parallel problem solving from nature, PPSN XII (part 1), Taormina. Lecture notes in computer science, vol 7491. Springer, pp 21–31Google Scholar
  8. Nguyen QU, Nguyen XH, O’Neill M (2009a) Semantic aware crossover for genetic programming: the case for real-valued function regression. In: Vanneschi L, Gustafson S, Moraglio A, De Falco I, Ebner M (eds) Proceedings of the 12th European conference on genetic programming, EuroGP 2009, Tuebingen. Lecture notes in computer science, vol 5481. Springer, pp 292–302. doi:10.1007/978-3-642-01181-8-25Google Scholar
  9. Nguyen QU, Nguyen XH, O’Neill M (2009b) Semantics based mutation in genetic programming: the case for real-valued symbolic regression. In: Matousek R, Nolle L (eds) 15th international conference on soft computing, Mendel’09, Brno, pp 73–91Google Scholar
  10. Uy NQ, Hoai NX, O’Neill M, McKay B (2010) The role of syntactic and semantic locality of crossover in genetic programming. In: Schaefer R, Cotta C, Kolodziej J, Rudolph G (eds) 11th international conference on parallel problem solving from nature, PPSN 2010, Krakow. Lecture notes in computer science, vol 6239. Springer, pp 533–542. doi:10.1007/978-3-642-15871-1-54Google Scholar
  11. Uy NQ, Hoai NX, O’Neill M, McKay RI, Galvan-Lopez E (2011) Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet Program Evolvable Mach 12(2):91–119. doi:10.1007/s10710-010-9121-2CrossRefGoogle Scholar
  12. Vanneschi L, Castelli M, Manzoni L, Silva S (2013) A new implementation of geometric semantic GP applied to predicting pharmacokinetic parameters. In: Proceedings of the 16th European conference on genetic programming, EuroGP’13, Vienna. Springer, pp 205–216Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Leonardo Vanneschi
    • 1
    • 2
    • 3
    Email author
  • Sara Silva
    • 2
    • 4
  • Mauro Castelli
    • 1
    • 2
  • Luca Manzoni
    • 3
  1. 1.ISEGIUniversidade Nova de LisboaLisboaPortugal
  2. 2.INESC-ID, ISTUniversidade Técnica de LisboaLisboaPortugal
  3. 3.D.I.S.Co.University of Milano-BicoccaMilanItaly
  4. 4.CISUCUniversidade de CoimbraCoimbraPortugal

Personalised recommendations